(Huge) delegate vote anomaly in Alabama verified

People keep saying that the demographic argument is dead. With this graph in mind, tell me why that is.

Because the charts with the straight sloped lines are anomalous. If these slopes are what is to be expected because of demographics, we should see them consistently. We don't. For instance, there are only 2 anomalous counties in Nevada (of course, they represent over 70% of the total votes), but the remaining counties have nice normal mathematics. Historical data (alabama 2008, New Hampshire back into the 90s, etc.) follow the early noise then flat line at a percentage expected pattern. Why would "demographics" be at work only in certain places and not others. The latest is Outagamie county in Wisconsin (posted by Ron Rules on the other thread) other demographically and politically similar counties are flipping like pancakes at the ihop, but not Outagamie county.

This was really put to bed about six weeks ago here : http://www.ronpaulforums.com/showth...ote-against-Ron-Paul-in-South-Carolina/page99

and is abbreviated in the technical addendum here p.29-37 https://docs.google.com/document/d/1EokVx9tDsrjAJ-7H9XoPv3KmZYDvVjSFJ4cuxJTo1iE/edit

but I think it is worth repeating for the newcomers even though it's a little long. If you don't understand the math, please read the relevant parts of the tech addendum before questions. Here is the series Liberty1789 did for the counties of South Carolina (for those interested in the county level demographics there were numerous maps posted in the above thread; look them over if you like)
250o65g.jpg

ehgdg7.jpg

9u547r.jpg
 
OK- Your red graph line is distorting the sharpness of the elbow but looks like you've done it. Your "straight" line is way off. If there's any way to distort the natural sharpness of the elbow any more than you have, I'd be shocked.

I'm not sure what you mean. The red line is the data. The "straight" lines actually are straight. With my data it only starts to look like an elbow with the y-axis compressed, and with the linear overlays. Plot it without compressing the y-axis, and without the linear overlays, and it's the first graph I posted. If there really is an elbow then my calculation is wrong. I'll append the data below, with x and y values scaled by 100,000 and 1000 respectively to match your graph.

If I've got the data wrong, could you perhaps append your own data points for that original #2 graph (or for that matter, any other delegate scoring method you think is more clear as long as the calculation method is clear)? I want to be sure I understand what's going on around that 300,000 point, with data I can replicate, before getting deeper into your analysis.

Code:
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
0.0, 0.0
1e-05, 0.001
2e-05, 0.001
3e-05, 0.001
4e-05, 0.001
5e-05, 0.0
6e-05, -0.001
7e-05, -0.001
8e-05, -0.000777777777778
9e-05, -0.000777777777778
0.0001, -0.000777777777778
0.00011, 0.000166666666667
0.00012, 0.000166666666667
0.00013, 0.000166666666667
0.00014, 0.000166666666667
0.00015, 0.00116666666667
0.00016, 0.00116666666667
0.00017, 0.00116666666667
0.00018, 0.00116666666667
0.00019, 0.00116666666667
0.0002, 0.00116666666667
0.00021, 0.00116666666667
0.00022, 0.00116666666667
0.00023, 0.00116666666667
0.00025, 0.000166666666667
0.00027, 0.00116666666667
0.00029, 0.00116666666667
0.00031, 0.00316666666667
0.00033, 0.00316666666667
0.00035, 0.00277777777778
0.00037, 0.00277777777778
0.00039, 0.00372222222222
0.00041, 0.00272222222222
0.00043, 0.00272222222222
0.00045, 0.00172222222222
0.00047, 0.00172222222222
0.00049, 0.00316666666667
0.00051, 0.00316666666667
0.00053, 0.002
0.00055, 0.002
0.00057, 0.00194444444444
0.00059, 0.00294444444444
0.00061, 0.00294444444444
0.00063, 0.00283333333333
0.00065, 0.00311111111111
0.00067, 0.00311111111111
0.00069, 0.00311111111111
0.00072, 0.0035
0.00075, 0.0035
0.00078, 0.0035
0.00081, 0.00333333333333
0.00084, 0.00338888888889
0.00087, 0.00527777777778
0.0009, 0.00727777777778
0.00093, 0.00638888888889
0.00096, 0.00461111111111
0.00099, 0.00361111111111
0.00102, 0.00366666666667
0.00105, 0.00405555555556
0.00108, 0.007
0.00111, 0.00755555555556
0.00115, 0.0085
0.00119, 0.0085
0.00123, 0.00877777777778
0.00127, 0.00877777777778
0.00131, 0.00777777777778
0.00135, 0.00644444444444
0.00139, 0.00744444444444
0.00143, 0.00744444444444
0.00147, 0.00744444444444
0.00151, 0.00716666666667
0.00155, 0.00616666666667
0.0016, 0.00522222222222
0.00165, 0.00522222222222
0.0017, 0.006
0.00175, 0.006
0.0018, 0.00505555555556
0.00185, 0.00505555555556
0.0019, 0.00405555555556
0.00195, 0.00305555555556
0.002, 0.00305555555556
0.00205, 0.00305555555556
0.0021, 0.00366666666667
0.00215, 0.00266666666667
0.0022, 0.000722222222222
0.00225, -5.55555555556e-05
0.0023, 0.00394444444444
0.00235, 0.00405555555556
0.0024, 0.00405555555556
0.00245, 0.00427777777778
0.00251, 0.00444444444444
0.00257, 0.00383333333333
0.00263, 0.00377777777778
0.00269, 0.00672222222222
0.00275, 0.00672222222222
0.00281, 0.00866666666667
0.00287, 0.0075
0.00293, 0.00744444444444
0.00299, 0.00644444444444
0.00305, 0.00544444444444
0.00311, 0.00344444444444
0.00317, 0.0025
0.00323, 0.0025
0.00329, 0.00216666666667
0.00336, 0.00133333333333
0.00343, 0.00133333333333
0.0035, 0.000388888888889
0.00357, 0.000388888888889
0.00364, -0.000333333333333
0.00371, 0.000666666666667
0.00378, -0.000722222222222
0.00385, -0.00172222222222
0.00392, -0.0025
0.00399, -0.00188888888889
0.00406, -0.000444444444444
0.00413, -0.00138888888889
0.0042, -0.00233333333333
0.00427, -0.00238888888889
0.00435, -0.000388888888889
0.00443, 0.00222222222222
0.00451, 0.00222222222222
0.00459, 0.00288888888889
0.00467, 0.00388888888889
0.00475, 0.00394444444444
0.00483, 0.00144444444444
0.00491, -0.0005
0.005, -0.00116666666667
0.00509, -0.00255555555556
0.00518, -0.00355555555556
0.00527, -0.00594444444444
0.00536, -0.00433333333333
0.00545, -0.00533333333333
0.00554, -0.00733333333333
0.00563, -0.00722222222222
0.00572, -0.00616666666667
0.00581, -0.00722222222222
0.0059, -0.00916666666667
0.00599, -0.00816666666667
0.00608, -0.00861111111111
0.00617, -0.0107222222222
0.00626, -0.0126666666667
0.00635, -0.00727777777778
0.00644, -0.00638888888889
0.00653, -0.00572222222222
0.00662, -0.00688888888889
0.00671, -0.00688888888889
0.00681, -0.00988888888889
0.00691, -0.0104444444444
0.00701, -0.0101111111111
0.00711, -0.0121111111111
0.00721, -0.00866666666667
0.00732, -0.00705555555556
0.00743, -0.00644444444444
0.00754, -0.00577777777778
0.00765, -0.00777777777778
0.00776, -0.00744444444444
0.00787, -0.00944444444444
0.00798, -0.0108888888889
0.00809, -0.0104444444444
0.0082, -0.0075
0.00831, -0.00877777777778
0.00842, -0.00711111111111
0.00854, -0.00711111111111
0.00866, -0.00722222222222
0.00878, -0.00622222222222
0.0089, -0.00761111111111
0.00902, -0.00861111111111
0.00914, -0.00744444444444
0.00926, -0.00744444444444
0.00938, -0.00838888888889
0.0095, -0.00838888888889
0.00962, -0.009
0.00974, -0.0119444444444
0.00986, -0.00794444444444
0.00999, -0.0130555555556
0.01012, -0.0115555555556
0.01025, -0.0106111111111
0.01038, -0.0117222222222
0.01051, -0.00972222222222
0.01064, -0.011
0.01077, -0.00727777777778
0.0109, -0.00633333333333
0.01104, -0.00588888888889
0.01118, -0.00694444444444
0.01132, -0.00661111111111
0.01146, -0.00661111111111
0.0116, -0.008
0.01174, -0.00816666666667
0.01188, -0.0075
0.01202, -0.00794444444444
0.01216, -0.00438888888889
0.0123, -0.00633333333333
0.01244, -0.00488888888889
0.01258, -0.00688888888889
0.01272, -0.00988888888889
0.01286, -0.0107222222222
0.01301, -0.00983333333333
0.01316, -0.00777777777778
0.01331, -0.00777777777778
0.01346, -0.00877777777778
0.01361, -0.007
0.01376, -0.00405555555556
0.01391, -0.00294444444444
0.01406, -0.00394444444444
0.01421, -0.00405555555556
0.01436, -0.00711111111111
0.01451, -0.00172222222222
0.01466, -0.00233333333333
0.01482, -0.000666666666667
0.01498, -0.00272222222222
0.01514, -0.00244444444444
0.0153, -0.00444444444444
0.01546, -0.00477777777778
0.01562, -0.00694444444444
0.01578, -0.00411111111111
0.01594, -0.00227777777778
0.0161, -0.000277777777778
0.01627, -0.00327777777778
0.01644, 0.000388888888889
0.01661, 0.00338888888889
0.01678, -0.00211111111111
0.01695, -0.00144444444444
0.01712, -0.000444444444444
0.01729, -0.0005
0.01747, -0.000166666666667
0.01765, 0.000111111111111
0.01783, 0.000444444444444
0.01801, 0.000111111111111
0.01819, -0.00461111111111
0.01837, -0.00761111111111
0.01855, -0.00855555555556
0.01873, -0.00694444444444
0.01891, -0.007
0.0191, -0.00577777777778
0.01929, -0.00688888888889
0.01948, -0.00894444444444
0.01967, -0.01
0.01986, -0.009
0.02005, -0.00805555555556
0.02024, -0.00677777777778
0.02043, -0.0075
0.02062, -0.00633333333333
0.02081, -0.00355555555556
0.02101, 0.000666666666667
0.02121, -0.000888888888889
0.02141, -0.00527777777778
0.02161, -0.00527777777778
0.02181, -0.00655555555556
0.02202, -0.00483333333333
0.02223, -0.00944444444444
0.02244, -0.00727777777778
0.02265, -0.00333333333333
0.02286, -0.00533333333333
0.02307, -0.00261111111111
0.02329, -0.00566666666667
0.02351, -0.00422222222222
0.02373, -0.00633333333333
0.02395, -0.00694444444444
0.02417, -0.0105555555556
0.02439, -0.00972222222222
0.02461, -0.00488888888889
0.02484, -0.00388888888889
0.02507, -0.00388888888889
0.0253, -0.00616666666667
0.02553, -0.00527777777778
0.02576, -0.00433333333333
0.02599, -0.00138888888889
0.02623, 0.00155555555556
0.02647, 0.00294444444444
0.02671, 0.00494444444444
0.02695, 0.00494444444444
0.02719, 0.00288888888889
0.02743, 0.00394444444444
0.02767, 0.000722222222222
0.02791, -0.000944444444444
0.02815, -0.00377777777778
0.02839, -0.00533333333333
0.02863, -0.00477777777778
0.02887, -0.00377777777778
0.02912, -0.00605555555556
0.02937, -0.00166666666667
0.02962, 0.000333333333333
0.02987, 0.00566666666667
0.03012, 0.00266666666667
0.03037, -0.000333333333333
0.03062, 0.000333333333333
0.03088, 0.003
0.03114, 0.0103333333333
0.0314, 0.00844444444444
0.03167, 0.00916666666667
0.03194, 0.0159444444444
0.03221, 0.0153888888889
0.03249, 0.0122777777778
0.03277, 0.00844444444444
0.03305, 0.00994444444444
0.03333, 0.012
0.03362, 0.0120555555556
0.03391, 0.0150555555556
0.0342, 0.0133333333333
0.03449, 0.0153333333333
0.03478, 0.00972222222222
0.03507, 0.00672222222222
0.03536, 0.00855555555556
0.03565, 0.0075
0.03595, 0.00172222222222
0.03625, -0.00138888888889
0.03655, 0.00566666666667
0.03685, 0.00538888888889
0.03715, 0.00544444444444
0.03745, 0.0131666666667
0.03775, 0.0112222222222
0.03805, 0.014
0.03835, 0.0172222222222
0.03865, 0.0164444444444
0.03895, 0.0171111111111
0.03925, 0.0161666666667
0.03955, 0.0142222222222
0.03986, 0.0225555555556
0.04017, 0.0224444444444
0.04048, 0.0263888888889
0.04079, 0.0262222222222
0.0411, 0.0255555555556
0.04141, 0.0272222222222
0.04173, 0.028
0.04205, 0.0243333333333
0.04237, 0.0249444444444
0.04269, 0.0177222222222
0.04301, 0.0193333333333
0.04333, 0.0168333333333
0.04365, 0.0201111111111
0.04397, 0.0229444444444
0.04429, 0.0227777777778
0.04461, 0.0252777777778
0.04494, 0.0265
0.04527, 0.0247777777778
0.0456, 0.025
0.04593, 0.024
0.04626, 0.0298333333333
0.04659, 0.0298888888889
0.04692, 0.0268888888889
0.04725, 0.0306111111111
0.04759, 0.0301666666667
0.04793, 0.0279444444444
0.04827, 0.0277222222222
0.04861, 0.0307777777778
0.04895, 0.0301111111111
0.0493, 0.0269444444444
0.04965, 0.0253333333333
0.05001, 0.0231666666667
0.05037, 0.0231111111111
0.05073, 0.0241111111111
0.05109, 0.0219444444444
0.05145, 0.0206666666667
0.05181, 0.017
0.05217, 0.0137777777778
0.05253, 0.0117222222222
0.05289, 0.0189444444444
0.05325, 0.0208333333333
0.05362, 0.00911111111111
0.05399, 0.00588888888889
0.05436, 0.00661111111111
0.05473, 0.00555555555556
0.0551, 0.00122222222222
0.05547, 0.00188888888889
0.05585, 0.00355555555556
0.05623, 5.55555555556e-05
0.05661, -0.000333333333333
0.05699, -0.00516666666667
0.05737, 0.00361111111111
0.05776, 0.00311111111111
0.05815, 0.000444444444444
0.05854, 0.00233333333333
0.05893, 0.00655555555556
0.05932, 0.0118888888889
0.05971, 0.0126666666667
0.0601, 0.0126111111111
0.06049, 0.0133888888889
0.06088, 0.0130555555556
0.06127, 0.0134444444444
0.06166, 0.0139444444444
0.06206, 0.0141666666667
0.06246, 0.0151111111111
0.06286, 0.0146666666667
0.06326, 0.0146666666667
0.06366, 0.0118333333333
0.06406, 0.0126666666667
0.06446, 0.011
0.06486, 0.0109444444444
0.06527, 0.00966666666667
0.06568, 0.00911111111111
0.06609, 0.0114444444444
0.0665, 0.0101111111111
0.06691, 0.0114444444444
0.06732, 0.0141666666667
0.06773, 0.0140555555556
0.06814, 0.0172222222222
0.06856, 0.0145
0.06898, 0.0134444444444
0.0694, 0.0205
0.06982, 0.0253888888889
0.07024, 0.0163333333333
0.07066, 0.0146111111111
0.07108, 0.0141111111111
0.0715, 0.0195555555556
0.07192, 0.0193888888889
0.07234, 0.0208888888889
0.07276, 0.0208333333333
0.07319, 0.0230555555556
0.07362, 0.0250555555556
0.07405, 0.0225
0.07448, 0.0248333333333
0.07491, 0.0222222222222
0.07535, 0.0291111111111
0.07579, 0.0295
0.07623, 0.0312222222222
0.07667, 0.0260555555556
0.07711, 0.028
0.07755, 0.0322777777778
0.07799, 0.0333888888889
0.07843, 0.032
0.07887, 0.0195555555556
0.07932, 0.0182222222222
0.07977, 0.0192777777778
0.08022, 0.0158888888889
0.08067, 0.0168888888889
0.08112, 0.0159444444444
0.08157, 0.0128888888889
0.08203, 0.0122777777778
0.08249, 0.0134444444444
0.08295, 0.006
0.08341, 0.00905555555556
0.08387, 0.0209444444444
0.08433, 0.0175
0.08479, 0.0242777777778
0.08525, 0.0237777777778
0.08571, 0.0174444444444
0.08617, 0.0175555555556
0.08663, 0.0165555555556
0.0871, 0.0145
0.08757, 0.0130555555556
0.08804, 0.0119444444444
0.08851, 0.0158333333333
0.08898, 0.0146111111111
0.08945, 0.0127777777778
0.08992, 0.007
0.09039, 0.00905555555556
0.09086, 0.0199444444444
0.09134, 0.0227777777778
0.09182, 0.0178888888889
0.0923, 0.0194444444444
0.09278, 0.0190555555556
0.09326, 0.0127222222222
0.09374, 0.0184444444444
0.09423, 0.0206666666667
0.09472, 0.0217222222222
0.09521, 0.0173888888889
0.09571, 0.0154444444444
0.09621, 0.0145555555556
0.09671, 0.0116111111111
0.09722, 0.0121111111111
0.09773, 0.0104444444444
0.09824, 0.0154444444444
0.09875, 0.0119444444444
0.09926, 0.0106666666667
0.09977, 0.0116111111111
0.10028, 0.0105
0.10079, 0.0111666666667
0.10131, 0.0165
0.10183, 0.0155555555556
0.10235, 0.0172222222222
0.10287, 0.0173888888889
0.10339, 0.0191111111111
0.10391, 0.0209444444444
0.10443, 0.0166111111111
0.10495, 0.0212777777778
0.10548, 0.0204444444444
0.10601, 0.0244444444444
0.10654, 0.0276666666667
0.10707, 0.0244444444444
0.1076, 0.0255
0.10813, 0.0250555555556
0.10866, 0.0267777777778
0.10919, 0.0197777777778
0.10973, 0.0132777777778
0.11027, 0.0152222222222
0.11081, 0.0159444444444
0.11136, 0.0147222222222
0.11191, 0.0142777777778
0.11246, 0.0166666666667
0.11301, 0.0225555555556
0.11357, 0.0247777777778
0.11413, 0.0328888888889
0.11469, 0.0437777777778
0.11525, 0.0535
0.11582, 0.0510555555556
0.11639, 0.0569444444444
0.11696, 0.0506666666667
0.11754, 0.0506666666667
0.11812, 0.0488888888889
0.1187, 0.0472777777778
0.11928, 0.045
0.11986, 0.0439444444444
0.12045, 0.0522222222222
0.12104, 0.0501666666667
0.12163, 0.0463888888889
0.12222, 0.045
0.12281, 0.0422777777778
0.12341, 0.0416666666667
0.12401, 0.0417222222222
0.12461, 0.0353888888889
0.12521, 0.0343333333333
0.12581, 0.0313888888889
0.12641, 0.0321666666667
0.12701, 0.0347777777778
0.12762, 0.0387222222222
0.12823, 0.0285
0.12885, 0.0220555555556
0.12947, 0.0273333333333
0.13009, 0.0406666666667
0.13071, 0.0383888888889
0.13134, 0.0516111111111
0.13197, 0.0474444444444
0.1326, 0.0546666666667
0.13323, 0.0534444444444
0.13387, 0.0621666666667
0.13451, 0.0663888888889
0.13515, 0.0637777777778
0.13579, 0.0572222222222
0.13644, 0.0606666666667
0.13709, 0.0644444444444
0.13774, 0.0730555555556
0.13839, 0.0796666666667
0.13904, 0.0857777777778
0.13969, 0.0803333333333
0.14034, 0.0800555555556
0.14099, 0.0786111111111
0.14164, 0.0790555555556
0.14229, 0.0705555555556
0.14294, 0.0636666666667
0.1436, 0.0643333333333
0.14426, 0.0797777777778
0.14492, 0.103333333333
0.14558, 0.104833333333
0.14624, 0.110055555556
0.1469, 0.111611111111
0.14756, 0.119944444444
0.14823, 0.123166666667
0.1489, 0.122722222222
0.14957, 0.126611111111
0.15024, 0.125333333333
0.15092, 0.124722222222
0.1516, 0.131111111111
0.15229, 0.134055555556
0.15298, 0.134222222222
0.15367, 0.133333333333
0.15436, 0.134722222222
0.15505, 0.131333333333
0.15574, 0.1415
0.15643, 0.138555555556
0.15712, 0.144833333333
0.15781, 0.145944444444
0.15851, 0.141444444444
0.15921, 0.154944444444
0.15991, 0.154277777778
0.16061, 0.158611111111
0.16131, 0.162111111111
0.16201, 0.162722222222
0.16272, 0.174055555556
0.16343, 0.175444444444
0.16414, 0.167111111111
0.16485, 0.166222222222
0.16556, 0.172722222222
0.16627, 0.1735
0.16698, 0.166222222222
0.1677, 0.173111111111
0.16842, 0.173666666667
0.16914, 0.177277777778
0.16986, 0.179055555556
0.17059, 0.170055555556
0.17133, 0.183166666667
0.17207, 0.182277777778
0.17281, 0.185666666667
0.17356, 0.190888888889
0.17431, 0.184777777778
0.17506, 0.183777777778
0.17581, 0.179888888889
0.17657, 0.183888888889
0.17733, 0.187611111111
0.17809, 0.191333333333
0.17885, 0.192
0.17961, 0.196111111111
0.18037, 0.205388888889
0.18113, 0.207333333333
0.18189, 0.199388888889
0.18265, 0.204944444444
0.18341, 0.206
0.18417, 0.205944444444
0.18494, 0.205833333333
0.18572, 0.21
0.1865, 0.213388888889
0.18728, 0.210888888889
0.18807, 0.210444444444
0.18886, 0.209333333333
0.18965, 0.206666666667
0.19044, 0.198888888889
0.19124, 0.202722222222
0.19204, 0.2105
0.19284, 0.225944444444
0.19365, 0.221111111111
0.19446, 0.221944444444
0.19527, 0.226777777778
0.19608, 0.241555555556
0.19689, 0.248888888889
0.1977, 0.241444444444
0.19851, 0.245222222222
0.19933, 0.247277777778
0.20015, 0.251111111111
0.20097, 0.248444444444
0.20179, 0.254444444444
0.20261, 0.258833333333
0.20344, 0.257111111111
0.20427, 0.253388888889
0.2051, 0.262388888889
0.20593, 0.262666666667
0.20676, 0.262388888889
0.20759, 0.267166666667
0.20842, 0.269666666667
0.20925, 0.261777777778
0.21008, 0.265777777778
0.21092, 0.273722222222
0.21176, 0.269777777778
0.2126, 0.270277777778
0.21344, 0.261277777778
0.21429, 0.262888888889
0.21514, 0.266333333333
0.21599, 0.263833333333
0.21684, 0.266222222222
0.21769, 0.260611111111
0.21854, 0.253333333333
0.21939, 0.250611111111
0.22025, 0.252777777778
0.22111, 0.265222222222
0.22197, 0.261777777778
0.22283, 0.270833333333
0.22369, 0.272277777778
0.22455, 0.267611111111
0.22541, 0.261166666667
0.22628, 0.272
0.22716, 0.280777777778
0.22804, 0.282444444444
0.22893, 0.280666666667
0.22982, 0.270277777778
0.23071, 0.269222222222
0.2316, 0.268555555556
0.23249, 0.264944444444
0.23338, 0.259833333333
0.23427, 0.2605
0.23517, 0.257
0.23607, 0.266555555556
0.23697, 0.267888888889
0.23787, 0.265277777778
0.23877, 0.259666666667
0.23968, 0.264888888889
0.24059, 0.267666666667
0.24151, 0.258944444444
0.24243, 0.251388888889
0.24335, 0.240222222222
0.24427, 0.240111111111
0.2452, 0.2405
0.24613, 0.244111111111
0.24706, 0.256777777778
0.24799, 0.273222222222
0.24892, 0.279
0.24986, 0.286777777778
0.2508, 0.293388888889
0.25174, 0.292055555556
0.25269, 0.298611111111
0.25364, 0.302277777778
0.25459, 0.302444444444
0.25554, 0.310111111111
0.2565, 0.291111111111
0.25746, 0.296722222222
0.25842, 0.299166666667
0.25938, 0.304055555556
0.26034, 0.303055555556
0.2613, 0.305277777778
0.26227, 0.296222222222
0.26324, 0.305166666667
0.26422, 0.302833333333
0.2652, 0.307555555556
0.26618, 0.316666666667
0.26716, 0.3145
0.26814, 0.305833333333
0.26913, 0.304611111111
0.27012, 0.296166666667
0.27112, 0.285666666667
0.27212, 0.282666666667
0.27312, 0.277222222222
0.27412, 0.259611111111
0.27512, 0.2645
0.27612, 0.278444444444
0.27713, 0.277722222222
0.27814, 0.285666666667
0.27915, 0.295277777778
0.28016, 0.297555555556
0.28118, 0.317944444444
0.2822, 0.328388888889
0.28322, 0.327777777778
0.28425, 0.331722222222
0.28528, 0.339222222222
0.28631, 0.333888888889
0.28734, 0.347333333333
0.28837, 0.349055555556
0.2894, 0.3465
0.29043, 0.342277777778
0.29147, 0.356388888889
0.29251, 0.347777777778
0.29355, 0.336666666667
0.2946, 0.337777777778
0.29565, 0.345111111111
0.2967, 0.354333333333
0.29775, 0.350277777778
0.2988, 0.340666666667
0.29986, 0.3385
0.30092, 0.344166666667
0.30198, 0.358444444444
0.30304, 0.359333333333
0.3041, 0.352111111111
0.30516, 0.350166666667
0.30623, 0.341388888889
0.30731, 0.330222222222
0.30839, 0.343833333333
0.30947, 0.355
0.31055, 0.364611111111
0.31163, 0.365833333333
0.31272, 0.3715
0.31381, 0.379388888889
0.3149, 0.380055555556
0.31599, 0.378388888889
0.31708, 0.367555555556
0.31818, 0.365
0.31928, 0.355833333333
0.32038, 0.358388888889
0.32149, 0.372111111111
0.32261, 0.374888888889
0.32373, 0.371222222222
0.32485, 0.372722222222
0.32598, 0.377
0.32711, 0.378
0.32825, 0.381277777778
0.32939, 0.381444444444
0.33053, 0.393222222222
0.33167, 0.397055555556
0.33281, 0.394222222222
0.33396, 0.401388888889
0.33511, 0.420611111111
0.33626, 0.413444444444
0.33742, 0.420944444444
0.33859, 0.423611111111
0.33976, 0.424777777778
0.34093, 0.418277777778
0.3421, 0.421222222222
0.34327, 0.414166666667
0.34444, 0.428388888889
0.34562, 0.421722222222
0.3468, 0.410277777778
0.34798, 0.398666666667
0.34916, 0.392944444444
0.35035, 0.401055555556
0.35154, 0.401555555556
0.35274, 0.400777777778
0.35394, 0.404666666667
0.35514, 0.415222222222
0.35635, 0.431722222222
0.35756, 0.443944444444
0.35878, 0.438888888889
0.36, 0.444777777778
0.36122, 0.452833333333
0.36245, 0.473055555556
0.36368, 0.487166666667
0.36491, 0.502277777778
0.36614, 0.487555555556
0.36738, 0.481777777778
0.36862, 0.482388888889
0.36986, 0.484388888889
0.3711, 0.500388888889
0.37234, 0.509833333333
0.37358, 0.512277777778
0.37482, 0.505388888889
0.37607, 0.508388888889
0.37733, 0.514277777778
0.37859, 0.501111111111
0.37985, 0.5
0.38111, 0.488944444444
0.38237, 0.491833333333
0.38363, 0.478111111111
0.3849, 0.486333333333
0.38617, 0.494555555556
0.38744, 0.506444444444
0.38871, 0.497388888889
0.38998, 0.492277777778
0.39125, 0.486944444444
0.39252, 0.499888888889
0.39379, 0.497277777778
0.39507, 0.496722222222
0.39635, 0.491444444444
0.39763, 0.481222222222
0.39892, 0.464666666667
0.40021, 0.455444444444
0.40151, 0.448722222222
0.40281, 0.457
0.40411, 0.428
0.40541, 0.421055555556
0.40672, 0.429277777778
0.40803, 0.4235
0.40934, 0.421888888889
0.41066, 0.410277777778
0.41198, 0.404444444444
0.4133, 0.402166666667
0.41462, 0.402611111111
0.41594, 0.407555555556
0.41726, 0.408611111111
0.41858, 0.417944444444
0.41991, 0.441388888889
0.42124, 0.436611111111
0.42257, 0.422277777778
0.42391, 0.433
0.42525, 0.427222222222
0.4266, 0.429722222222
0.42795, 0.434388888889
0.4293, 0.442833333333
0.43065, 0.432166666667
0.432, 0.4205
0.43335, 0.420833333333
0.43471, 0.411777777778
0.43607, 0.4235
0.43743, 0.421611111111
0.43879, 0.415666666667
0.44015, 0.421277777778
0.44152, 0.443055555556
0.44289, 0.439555555556
0.44427, 0.450333333333
0.44565, 0.451722222222
0.44704, 0.458388888889
0.44844, 0.465611111111
0.44985, 0.475111111111
0.45127, 0.472555555556
0.45269, 0.461555555556
0.45412, 0.475333333333
0.45555, 0.464777777778
0.45698, 0.460944444444
0.45841, 0.447333333333
0.45984, 0.462222222222
0.46128, 0.477111111111
0.46272, 0.476666666667
0.46416, 0.467222222222
0.4656, 0.468055555556
0.46705, 0.473388888889
0.4685, 0.483277777778
0.46996, 0.499666666667
0.47142, 0.496333333333
0.47289, 0.511111111111
0.47436, 0.4955
0.47584, 0.493055555556
0.47732, 0.492055555556
0.4788, 0.4995
0.48028, 0.491722222222
0.48177, 0.487722222222
0.48328, 0.502944444444
0.48479, 0.496
0.48631, 0.499833333333
0.48783, 0.499888888889
0.48935, 0.504833333333
0.49088, 0.496666666667
0.49241, 0.5115
0.49394, 0.538777777778
0.49547, 0.5335
0.497, 0.529888888889
0.49854, 0.528
0.50008, 0.518777777778
0.50162, 0.517111111111
0.50316, 0.525277777778
0.5047, 0.533444444444
0.50625, 0.541222222222
0.5078, 0.551222222222
0.50935, 0.556277777778
0.5109, 0.574333333333
0.51245, 0.576666666667
0.514, 0.578055555556
0.51555, 0.571444444444
0.5171, 0.571555555556
0.51865, 0.589222222222
0.52021, 0.576444444444
0.52177, 0.575666666667
0.52333, 0.572888888889
0.52491, 0.583666666667
0.52649, 0.585555555556
0.52807, 0.574055555556
0.52966, 0.559555555556
0.53125, 0.548555555556
0.53285, 0.556722222222
0.53446, 0.5605
0.53607, 0.571222222222
0.53769, 0.592722222222
0.53931, 0.585611111111
0.54093, 0.585833333333
0.54255, 0.600055555556
0.54417, 0.597611111111
0.5458, 0.603333333333
0.54743, 0.612166666667
0.54907, 0.617277777778
0.55071, 0.607666666667
0.55235, 0.608222222222
0.554, 0.598222222222
0.55565, 0.595888888889
0.5573, 0.593888888889
0.55895, 0.606444444444
0.56061, 0.602722222222
0.56227, 0.591666666667
0.56394, 0.594333333333
0.56561, 0.588166666667
0.56728, 0.585777777778
0.56895, 0.585111111111
0.57063, 0.584222222222
0.57232, 0.581166666667
0.57401, 0.581222222222
0.57571, 0.574444444444
0.57741, 0.591
0.57912, 0.605277777778
0.58084, 0.590111111111
0.58256, 0.583444444444
0.58428, 0.595833333333
0.586, 0.597833333333
0.58772, 0.578555555556
0.58946, 0.566222222222
0.5912, 0.568722222222
0.59294, 0.554444444444
0.59469, 0.5715
0.59645, 0.569666666667
0.59821, 0.556055555556
0.59997, 0.548
0.60173, 0.539555555556
0.60351, 0.548944444444
0.60529, 0.537777777778
0.60707, 0.547555555556
0.60885, 0.537555555556
0.61064, 0.550277777778
0.61244, 0.556166666667
0.61424, 0.540666666667
0.61604, 0.535555555556
0.61785, 0.535222222222
0.61966, 0.560888888889
0.62147, 0.571222222222
0.62328, 0.585388888889
0.62509, 0.568222222222
0.62692, 0.574388888889
0.62875, 0.584444444444
0.63058, 0.587333333333
0.63241, 0.579944444444
0.63425, 0.604888888889
0.63609, 0.594611111111
0.63793, 0.584611111111
0.63978, 0.582555555556
0.64163, 0.578388888889
0.64348, 0.570111111111
0.64534, 0.549111111111
0.64721, 0.523222222222
0.64908, 0.509888888889
0.65095, 0.508777777778
0.65282, 0.500666666667
0.6547, 0.485277777778
0.65658, 0.4765
0.65847, 0.477111111111
0.66036, 0.475277777778
0.66226, 0.477777777778
0.66417, 0.494833333333
0.66608, 0.493222222222
0.66799, 0.493666666667
0.66992, 0.497166666667
0.67185, 0.495055555556
0.67378, 0.510333333333
0.67572, 0.529
0.67766, 0.516
0.67961, 0.517666666667
0.68156, 0.497722222222
0.68352, 0.507333333333
0.68548, 0.512111111111
0.68746, 0.512222222222
0.68944, 0.499222222222
0.69142, 0.512611111111
0.6934, 0.514777777778
0.69539, 0.530444444444
0.69738, 0.527055555556
0.69938, 0.523888888889
0.70138, 0.543722222222
0.70338, 0.547111111111
0.70538, 0.552166666667
0.70738, 0.601222222222
0.70939, 0.604722222222
0.7114, 0.595611111111
0.71342, 0.594111111111
0.71544, 0.595833333333
0.71746, 0.591722222222
0.71949, 0.583277777778
0.72153, 0.571944444444
0.72357, 0.586611111111
0.72561, 0.564777777778
0.72768, 0.552055555556
0.72975, 0.556833333333
0.73182, 0.561277777778
0.73389, 0.574666666667
0.73597, 0.580666666667
0.73805, 0.583166666667
0.74013, 0.571666666667
0.74221, 0.550055555556
0.7443, 0.546166666667
0.74639, 0.544833333333
0.74848, 0.544833333333
0.75058, 0.560388888889
0.75268, 0.561111111111
0.75478, 0.5605
0.75689, 0.545444444444
0.759, 0.555555555556
0.76111, 0.552055555556
0.76322, 0.546777777778
0.76533, 0.571722222222
0.76745, 0.587611111111
0.76957, 0.587944444444
0.7717, 0.589277777778
0.77383, 0.580722222222
0.77596, 0.571
0.7781, 0.580611111111
0.78025, 0.565277777778
0.7824, 0.561111111111
0.78455, 0.558555555556
0.7867, 0.580166666667
0.78885, 0.568722222222
0.79101, 0.579722222222
0.79317, 0.581388888889
0.79533, 0.582388888889
0.79749, 0.572111111111
0.79965, 0.589833333333
0.80182, 0.593611111111
0.80399, 0.590333333333
0.80616, 0.591611111111
0.80833, 0.61
0.81051, 0.617555555556
0.81269, 0.627
0.81488, 0.6375
0.81708, 0.652166666667
0.81928, 0.6715
0.82148, 0.686944444444
0.82369, 0.684944444444
0.8259, 0.697777777778
0.82811, 0.696833333333
0.83033, 0.708722222222
0.83255, 0.724722222222
0.83477, 0.714111111111
0.837, 0.7165
0.83923, 0.690944444444
0.84146, 0.686611111111
0.84369, 0.7205
0.84592, 0.721111111111
0.84816, 0.719333333333
0.8504, 0.701611111111
0.85264, 0.700333333333
0.85489, 0.685
0.85714, 0.700888888889
0.85939, 0.7605
0.86164, 0.752444444444
0.8639, 0.754166666667
0.86616, 0.765944444444
0.86843, 0.776277777778
0.87071, 0.780055555556
0.87299, 0.766611111111
0.87527, 0.767333333333
0.87755, 0.764444444444
0.87984, 0.753833333333
0.88213, 0.766833333333
0.88442, 0.776944444444
0.88671, 0.779833333333
0.889, 0.794777777778
0.8913, 0.781777777778
0.89361, 0.764888888889
0.89592, 0.748611111111
0.89824, 0.777555555556
0.90056, 0.767722222222
0.9029, 0.791555555556
0.90524, 0.791277777778
0.90758, 0.778333333333
0.90992, 0.779944444444
0.91226, 0.827388888889
0.91461, 0.805777777778
0.91696, 0.807722222222
0.91931, 0.795333333333
0.92167, 0.805555555556
0.92403, 0.801111111111
0.9264, 0.794055555556
0.92877, 0.812444444444
0.93115, 0.805222222222
0.93353, 0.787444444444
0.93592, 0.792666666667
0.93831, 0.819611111111
0.94071, 0.850222222222
0.94312, 0.823055555556
0.94553, 0.827611111111
0.94795, 0.813111111111
0.95037, 0.818166666667
0.9528, 0.836111111111
0.95523, 0.8415
0.95766, 0.823
0.96009, 0.808388888889
0.96253, 0.81
0.96497, 0.808333333333
0.96741, 0.817388888889
0.96985, 0.811666666667
0.97229, 0.861777777778
0.97473, 0.841666666667
0.97718, 0.863
0.97963, 0.887388888889
0.98208, 0.881777777778
0.98454, 0.871611111111
0.987, 0.870222222222
0.98946, 0.898055555556
0.99192, 0.911666666667
0.99439, 0.939777777778
0.99686, 0.966888888889
0.99933, 0.968833333333
1.00181, 0.961777777778
1.00429, 0.976722222222
1.00678, 0.973777777778
1.00928, 1.00922222222
1.01178, 1.03
1.01428, 1.03605555556
1.01679, 1.05311111111
1.01932, 1.07144444444
1.02185, 1.08694444444
1.02438, 1.12911111111
1.02692, 1.13227777778
1.02946, 1.13744444444
1.03201, 1.14805555556
1.03456, 1.172
1.03711, 1.14405555556
1.03966, 1.13266666667
1.04222, 1.12033333333
1.0448, 1.13544444444
1.04739, 1.11083333333
1.04998, 1.13161111111
1.05258, 1.13272222222
1.05518, 1.14227777778
1.05779, 1.19661111111
1.06041, 1.22633333333
1.06303, 1.22383333333
1.06565, 1.23116666667
1.06827, 1.22694444444
1.07089, 1.23983333333
1.07351, 1.22272222222
1.07613, 1.23305555556
1.07875, 1.22144444444
1.0814, 1.22033333333
1.08405, 1.216
1.0867, 1.24855555556
1.08936, 1.26666666667
1.09203, 1.27005555556
1.0947, 1.26194444444
1.09738, 1.25472222222
1.10007, 1.25705555556
1.10276, 1.27288888889
1.10546, 1.27311111111
1.10817, 1.28438888889
1.11088, 1.28116666667
1.1136, 1.292
1.11633, 1.28477777778
1.11906, 1.28905555556
1.1218, 1.27511111111
1.12455, 1.26305555556
1.12731, 1.32827777778
1.13008, 1.34077777778
1.13285, 1.35066666667
1.13562, 1.38711111111
1.13839, 1.37372222222
1.14117, 1.376
1.14395, 1.36622222222
1.14674, 1.35438888889
1.14953, 1.35205555556
1.15232, 1.33866666667
1.15512, 1.33344444444
1.15793, 1.34283333333
1.16074, 1.345
1.16355, 1.3085
1.16637, 1.3135
1.16919, 1.33522222222
1.17201, 1.34244444444
1.17484, 1.37044444444
1.17767, 1.37772222222
1.18051, 1.34211111111
1.18335, 1.38533333333
1.1862, 1.38083333333
1.18905, 1.37277777778
1.19191, 1.39494444444
1.19477, 1.41122222222
1.19763, 1.42472222222
1.20049, 1.42133333333
1.20337, 1.42594444444
1.20625, 1.42788888889
1.20914, 1.42661111111
1.21203, 1.41988888889
1.21493, 1.42672222222
1.21783, 1.4265
1.22073, 1.40972222222
1.22363, 1.4355
1.22653, 1.42711111111
1.22945, 1.44222222222
1.23238, 1.437
1.23532, 1.44627777778
1.23827, 1.43722222222
1.24122, 1.45583333333
1.24417, 1.42855555556
1.24713, 1.44677777778
1.2501, 1.45338888889
1.25307, 1.4585
1.25604, 1.4735
1.25901, 1.46438888889
1.26199, 1.4665
1.26497, 1.49033333333
1.26795, 1.50661111111
1.27094, 1.51266666667
1.27393, 1.54033333333
1.27692, 1.54838888889
1.27992, 1.55416666667
1.28292, 1.58511111111
1.28593, 1.60738888889
1.28895, 1.60144444444
1.29197, 1.6155
1.29499, 1.63077777778
1.29801, 1.65844444444
1.30104, 1.64244444444
1.30407, 1.68572222222
1.3071, 1.70227777778
1.31015, 1.7335
1.3132, 1.72588888889
1.31627, 1.69811111111
1.31934, 1.70455555556
1.32241, 1.6795
1.32549, 1.67122222222
1.32857, 1.65822222222
1.33166, 1.64994444444
1.33476, 1.634
1.33787, 1.63933333333
1.34098, 1.626
1.3441, 1.63066666667
1.34724, 1.61272222222
1.35039, 1.61433333333
1.35356, 1.6175
1.35673, 1.62566666667
1.3599, 1.63088888889
1.36307, 1.614
1.36624, 1.59966666667
1.36941, 1.58766666667
1.37258, 1.60122222222
1.37576, 1.60805555556
1.37894, 1.609
1.38213, 1.5985
1.38533, 1.59338888889
1.38853, 1.58916666667
1.39174, 1.57783333333
1.39495, 1.57494444444
1.39816, 1.54977777778
1.40138, 1.55455555556
1.4046, 1.56588888889
1.40783, 1.61888888889
1.41107, 1.64644444444
1.41432, 1.65844444444
1.4176, 1.65
1.42089, 1.65633333333
1.4242, 1.62761111111
1.42751, 1.63077777778
1.43082, 1.63838888889
1.43415, 1.62672222222
1.43749, 1.63877777778
1.44083, 1.64211111111
1.44417, 1.66011111111
1.44752, 1.6605
1.4509, 1.65327777778
1.45429, 1.6245
1.45768, 1.62683333333
1.46109, 1.6125
1.4645, 1.62238888889
1.46792, 1.616
1.47139, 1.608
1.47486, 1.63294444444
1.47834, 1.66322222222
1.48182, 1.6705
1.48533, 1.64205555556
1.48885, 1.59088888889
1.49238, 1.59516666667
1.49593, 1.66994444444
1.49948, 1.66
1.50304, 1.66527777778
1.5066, 1.68488888889
1.51016, 1.70977777778
1.51372, 1.69255555556
1.51729, 1.68366666667
1.52087, 1.71944444444
1.52445, 1.7435
1.52803, 1.75388888889
1.53162, 1.8025
1.53521, 1.81277777778
1.53881, 1.8135
1.54242, 1.80755555556
1.54603, 1.80811111111
1.54966, 1.79955555556
1.5533, 1.79072222222
1.55695, 1.78505555556
1.5606, 1.77072222222
1.56425, 1.79294444444
1.56792, 1.76611111111
1.5716, 1.80322222222
1.57529, 1.78416666667
1.57898, 1.77872222222
1.58267, 1.78477777778
1.58637, 1.75766666667
1.59007, 1.75444444444
1.59378, 1.72638888889
1.59749, 1.73961111111
1.60122, 1.75872222222
1.60495, 1.80272222222
1.60868, 1.81316666667
1.61242, 1.787
1.6162, 1.78844444444
1.61998, 1.81105555556
1.62382, 1.76522222222
1.62766, 1.77427777778
1.6315, 1.78327777778
1.63535, 1.76883333333
1.6392, 1.74755555556
1.64307, 1.73511111111
1.64695, 1.76055555556
1.65085, 1.74288888889
1.65475, 1.79311111111
1.65867, 1.78633333333
1.66259, 1.74422222222
1.66654, 1.75672222222
1.67052, 1.7415
1.6745, 1.73455555556
1.67848, 1.75366666667
1.68249, 1.77588888889
1.68652, 1.73533333333
1.69055, 1.69861111111
1.69458, 1.68016666667
1.69862, 1.82194444444
1.70266, 1.84655555556
1.70671, 1.88722222222
1.71078, 1.867
1.71486, 1.86722222222
1.71898, 1.887
1.72312, 1.87038888889
1.72726, 1.88422222222
1.7314, 1.88566666667
1.73555, 1.87688888889
1.7397, 1.87344444444
1.74385, 1.88011111111
1.74803, 1.88933333333
1.75222, 1.86422222222
1.75643, 1.8385
1.76064, 1.84266666667
1.76485, 1.85105555556
1.76907, 1.83894444444
1.77329, 1.91261111111
1.77753, 1.93166666667
1.78177, 1.97894444444
1.78602, 1.94155555556
1.79027, 1.99133333333
1.79453, 1.98472222222
1.79879, 2.0025
1.80305, 2.02816666667
1.80733, 2.00688888889
1.81162, 2.02288888889
1.81592, 2.01661111111
1.82022, 1.99738888889
1.82452, 2.04427777778
1.82884, 2.06561111111
1.83316, 2.06844444444
1.83748, 2.10111111111
1.84181, 2.097
1.84615, 2.15927777778
1.85049, 2.146
1.85484, 2.14188888889
1.8592, 2.20961111111
1.86356, 2.15905555556
1.86795, 2.16761111111
1.87234, 2.14877777778
1.87675, 2.15888888889
1.88117, 2.20961111111
1.8856, 2.22383333333
1.89006, 2.25422222222
1.89452, 2.28427777778
1.89898, 2.30116666667
1.90345, 2.38111111111
1.90793, 2.39683333333
1.91242, 2.42572222222
1.91692, 2.45261111111
1.92143, 2.45211111111
1.92594, 2.48933333333
1.93046, 2.43933333333
1.935, 2.49211111111
1.93954, 2.487
1.94409, 2.45994444444
1.94865, 2.47322222222
1.95322, 2.47588888889
1.95779, 2.48783333333
1.9624, 2.48405555556
1.96702, 2.49305555556
1.97166, 2.48044444444
1.9763, 2.44161111111
1.98094, 2.42727777778
1.9856, 2.41877777778
1.99026, 2.44005555556
1.99493, 2.45661111111
1.9996, 2.48811111111
2.00428, 2.47472222222
2.00896, 2.501
2.01365, 2.51661111111
2.01837, 2.50416666667
2.02309, 2.51005555556
2.02783, 2.53161111111
2.03258, 2.49522222222
2.03734, 2.50566666667
2.0421, 2.52488888889
2.04688, 2.55827777778
2.05167, 2.56933333333
2.05647, 2.61505555556
2.06127, 2.64261111111
2.06607, 2.66416666667
2.07087, 2.65111111111
2.07571, 2.68894444444
2.08057, 2.69844444444
2.08544, 2.75661111111
2.09033, 2.73833333333
2.09522, 2.77405555556
2.10012, 2.76977777778
2.10503, 2.80166666667
2.10995, 2.86194444444
2.11488, 2.84866666667
2.11981, 2.89505555556
2.12474, 2.89505555556
2.12967, 2.88266666667
2.13462, 2.87422222222
2.13959, 2.873
2.14456, 2.87566666667
2.14955, 2.88611111111
2.15455, 2.89733333333
2.15956, 2.92738888889
2.16458, 2.89933333333
2.1696, 2.91516666667
2.17463, 2.93588888889
2.17967, 2.93688888889
2.18472, 2.95516666667
2.18978, 2.93505555556
2.19484, 2.92922222222
2.1999, 2.92505555556
2.20498, 2.96466666667
2.21007, 2.96072222222
2.21518, 2.9905
2.2203, 3.03311111111
2.22542, 3.04333333333
2.23055, 3.06033333333
2.23568, 3.09972222222
2.24081, 3.06477777778
2.24595, 3.0505
2.25111, 3.05944444444
2.25629, 3.05233333333
2.26149, 3.05744444444
2.26671, 3.05222222222
2.27196, 3.11538888889
2.27721, 3.08816666667
2.28252, 3.15094444444
2.28783, 3.14477777778
2.29316, 3.11983333333
2.29852, 3.07944444444
2.30393, 3.13266666667
2.30934, 3.18344444444
2.31477, 3.2045
2.32022, 3.17461111111
2.3257, 3.17877777778
2.33118, 3.17072222222
2.33667, 3.19894444444
2.34217, 3.19455555556
2.34769, 3.19816666667
2.35321, 3.2045
2.35876, 3.21455555556
2.36432, 3.20538888889
2.36989, 3.18911111111
2.37546, 3.24638888889
2.38104, 3.26505555556
2.38662, 3.32544444444
2.39222, 3.30727777778
2.39782, 3.32966666667
2.40344, 3.34244444444
2.40908, 3.293
2.41472, 3.38016666667
2.42038, 3.34305555556
2.42606, 3.34138888889
2.4318, 3.35494444444
2.43758, 3.36522222222
2.44337, 3.37577777778
2.44919, 3.37855555556
2.45502, 3.44416666667
2.46087, 3.49205555556
2.46675, 3.49933333333
2.47267, 3.56688888889
2.47861, 3.56661111111
2.48459, 3.57466666667
2.49058, 3.54944444444
2.4966, 3.57916666667
2.50262, 3.61511111111
2.50864, 3.61411111111
2.51469, 3.6445
2.52078, 3.78305555556
2.52687, 3.79138888889
2.53297, 3.81044444444
2.53908, 3.8425
2.54519, 3.8545
2.55131, 3.87472222222
2.55744, 3.89427777778
2.56358, 3.95338888889
2.56973, 3.94777777778
2.57589, 3.92588888889
2.58205, 3.91877777778
2.58823, 3.913
2.59441, 3.94166666667
2.6006, 3.93144444444
2.60679, 3.95155555556
2.61299, 3.91133333333
2.61919, 3.99005555556
2.62539, 3.98188888889
2.6316, 4.02666666667
2.63784, 4.05288888889
2.64409, 4.101
2.65038, 4.10766666667
2.65671, 4.15527777778
2.66306, 4.17977777778
2.66944, 4.21744444444
2.67583, 4.18922222222
2.68224, 4.20522222222
2.68867, 4.17411111111
2.6951, 4.18827777778
2.70154, 4.13766666667
2.70799, 4.12233333333
2.71445, 4.11011111111
2.72093, 4.0775
2.72741, 4.07255555556
2.73392, 4.06844444444
2.74045, 4.05988888889
2.74703, 4.07027777778
2.75363, 4.0525
2.76027, 4.13216666667
2.76691, 4.14433333333
2.77356, 4.21994444444
2.78021, 4.27155555556
2.78689, 4.27944444444
2.79357, 4.27805555556
2.80026, 4.32605555556
2.80695, 4.32477777778
2.81366, 4.40094444444
2.82043, 4.38738888889
2.82722, 4.3955
2.83404, 4.45994444444
2.84086, 4.51288888889
2.8477, 4.52711111111
2.85455, 4.52961111111
2.8614, 4.5495
2.86825, 4.56266666667
2.8751, 4.53883333333
2.88195, 4.51322222222
2.8888, 4.46566666667
2.89568, 4.45222222222
2.90256, 4.4795
2.90948, 4.54577777778
2.91641, 4.55033333333
2.92337, 4.53805555556
2.93036, 4.53227777778
2.93735, 4.57294444444
2.94436, 4.62294444444
2.95139, 4.61088888889
2.95843, 4.62066666667
2.96549, 4.65305555556
2.97258, 4.65794444444
2.97976, 4.65933333333
2.98696, 4.68955555556
2.9942, 4.78961111111
3.00144, 4.79022222222
3.00868, 4.81461111111
3.01595, 4.90394444444
3.02332, 4.95388888889
3.03072, 4.94016666667
3.03816, 5.0045
3.04562, 5.0605
3.05309, 5.0555
3.06058, 5.0015
3.06811, 5.003
3.07565, 5.0635
3.08319, 5.12094444444
3.09076, 5.256
3.09835, 5.23166666667
3.10597, 5.24294444444
3.11361, 5.40688888889
3.12126, 5.416
3.12894, 5.35555555556
3.13662, 5.32716666667
3.14431, 5.3695
3.152, 5.42155555556
3.15981, 5.46722222222
3.16762, 5.43044444444
3.17545, 5.49733333333
3.18334, 5.56072222222
3.19126, 5.57105555556
3.1992, 5.60572222222
3.20714, 5.66716666667
3.21509, 5.70638888889
3.22309, 5.68744444444
3.23111, 5.68844444444
3.23913, 5.74138888889
3.24716, 5.772
3.25519, 5.86966666667
3.26323, 5.901
3.27135, 5.98672222222
3.27951, 6.0655
3.28767, 6.064
3.29583, 6.139
3.304, 6.17883333333
3.31221, 6.20683333333
3.32047, 6.22244444444
3.32883, 6.27288888889
3.33719, 6.26422222222
3.34557, 6.31038888889
3.35396, 6.36494444444
3.36235, 6.39
3.37079, 6.401
3.37931, 6.45583333333
3.38784, 6.43477777778
3.39638, 6.44111111111
3.40492, 6.40855555556
3.41347, 6.43177777778
3.42206, 6.42338888889
3.43066, 6.3715
3.43933, 6.42238888889
3.44801, 6.35811111111
3.45672, 6.34394444444
3.46543, 6.43266666667
3.47415, 6.47022222222
3.48295, 6.47288888889
3.49176, 6.54627777778
3.50059, 6.56683333333
3.50945, 6.60561111111
3.51832, 6.64233333333
3.52723, 6.73811111111
3.53616, 6.82961111111
3.5451, 6.82072222222
3.55409, 6.814
3.56309, 7.09222222222
3.57209, 7.20783333333
3.58124, 7.28377777778
3.59039, 7.31355555556
3.59956, 7.35277777778
3.60877, 7.33044444444
3.61798, 7.38527777778
3.6272, 7.42083333333
3.63643, 7.43527777778
3.64569, 7.50038888889
3.65498, 7.54788888889
3.66429, 7.79883333333
3.67367, 7.98922222222
3.68305, 8.05444444444
3.69249, 8.09255555556
3.70199, 8.05005555556
3.71149, 8.07644444444
3.72099, 8.04494444444
3.7305, 8.08727777778
3.74005, 8.131
3.74962, 8.17883333333
3.75921, 8.15372222222
3.76892, 8.165
3.77865, 8.14738888889
3.78839, 8.21233333333
3.79815, 8.2755
3.80804, 8.40572222222
3.81796, 8.44938888889
3.82789, 8.54138888889
3.83788, 8.65627777778
3.84793, 8.64538888889
3.858, 8.76055555556
3.8681, 8.74583333333
3.87827, 8.76811111111
3.88845, 8.79716666667
3.89864, 8.81344444444
3.90887, 8.88788888889
3.91913, 9.08216666667
3.9294, 9.17766666667
3.93976, 9.21527777778
3.95013, 9.25033333333
3.96054, 9.40677777778
3.971, 9.48244444444
3.98153, 9.61655555556
3.99206, 9.70561111111
4.00267, 9.70216666667
4.01336, 9.75788888889
4.02406, 9.81294444444
4.03476, 9.94633333333
4.04547, 10.0123333333
4.05628, 10.0885555556
4.06713, 10.1291111111
4.07798, 10.325
4.08884, 10.4777222222
4.09973, 10.4912222222
4.11063, 10.6904444444
4.12154, 10.8445
4.13249, 11.1003333333
4.14351, 11.2891666667
4.15455, 11.2839444444
4.16566, 11.2891111111
4.17677, 11.3548888889
4.18794, 11.3962777778
4.19917, 11.4430555556
4.21046, 11.5277222222
4.22187, 11.6029444444
4.23334, 11.6542777778
4.24483, 11.6971666667
4.25634, 11.77
4.26787, 11.9270555556
4.27952, 11.9767222222
4.29118, 11.9572777778
4.30285, 11.9859444444
4.31458, 12.0375555556
4.32636, 12.0994444444
4.33829, 12.0913333333
4.35036, 12.0947777778
4.36245, 12.1192777778
4.37464, 12.3388888889
4.38684, 12.6725
4.39906, 12.8648888889
4.4113, 12.9002222222
4.42354, 12.9908888889
4.43587, 13.0437222222
4.44821, 13.1266111111
4.46055, 13.1751111111
4.47296, 13.2877777778
4.48548, 13.4130555556
4.49804, 13.7123333333
4.51061, 14.0063888889
4.52326, 14.0853333333
4.53593, 14.0876666667
4.54867, 14.1268333333
4.56166, 14.1324444444
4.57465, 14.2511666667
4.58788, 14.4002777778
4.60124, 14.5351666667
4.6146, 14.5261666667
4.62798, 14.6666111111
4.64142, 14.7617222222
4.65491, 14.8588888889
4.66843, 14.9558333333
4.68207, 14.9965
4.69579, 15.0158333333
4.70953, 15.0229444444
4.72346, 15.3309444444
4.73741, 15.4267222222
4.75141, 15.4143888889
4.7655, 15.5152222222
4.77965, 15.5786111111
4.79396, 15.6520555556
4.80837, 15.7883333333
4.82279, 15.8955
4.83733, 15.9909444444
4.85192, 16.0939444444
4.86657, 16.3196666667
4.88141, 16.4916666667
4.89642, 16.5978333333
4.9116, 16.5509444444
4.92699, 16.5923333333
4.94247, 16.9575
4.95801, 16.9417222222
4.97362, 17.2235
4.98929, 17.3282222222
5.00518, 17.4108888889
5.02108, 17.5067222222
5.03699, 17.6870555556
5.05295, 17.7644444444
5.06901, 17.73
5.08508, 17.7691111111
5.10118, 17.9225555556
5.11728, 18.2572777778
5.13343, 18.348
5.14973, 18.3560555556
5.16609, 18.3221111111
5.18291, 18.3886111111
5.19974, 18.5835555556
5.21661, 18.7804444444
5.23348, 19.0343888889
5.25042, 19.142
5.26743, 19.2558888889
5.28447, 19.4403888889
5.3016, 19.4451666667
5.31874, 19.5598333333
5.33599, 19.6006666667
5.35332, 19.7729444444
5.37068, 19.9007777778
5.38843, 20.0347222222
5.40672, 20.1298333333
5.42537, 20.1114444444
5.44453, 20.4510555556
5.46399, 20.4484444444
5.48397, 20.6762777778
5.50398, 20.7580555556
5.52412, 20.9785555556
5.54461, 21.1073333333
5.56534, 21.3353333333
5.5863, 21.4079444444
5.60828, 21.6375555556
5.63065, 21.6405
5.65319, 21.9128333333
5.67597, 22.1199444444
5.70755, 22.4641111111
5.74065, 22.5589444444
5.77559, 22.822
5.82875, 23.2131666667
 
13ylcu0.jpg

avhdow.jpg

28slai0.jpg

p22hv.jpg


So, if demographics explains all the sloped lines, like Horry, SC, then how does demographics explain all the flat lines, like Kershaw, SC?
 
Thanks for the ad-hominem. I have advanced degrees in science and mathematics.

Then presumably you can read and do simple statistics.

https://docs.google.com/document/d/1EokVx9tDsrjAJ-7H9XoPv3KmZYDvVjSFJ4cuxJTo1iE/edit

This is the cliff notes version. If you have some critique that's deeper than, "that's a crock", please use your brain cells and do something useful. Go ahead, find scientific evidence for your case. I dare you. Heck, I'll triple dog dare you.

Otherwise, we have more trolls than bridges, so you may need to find housing elsewhere.
 
Because the charts with the straight sloped lines are anomalous. If these slopes are what is to be expected because of demographics, we should see them consistently. We don't. For instance, there are only 2 anomalous counties in Nevada (of course, they represent over 70% of the total votes), but the remaining counties have nice normal mathematics. Historical data (alabama 2008, New Hampshire back into the 90s, etc.) follow the early noise then flat line at a percentage expected pattern. Why would "demographics" be at work only in certain places and not others.

BTW, did someone come up with the full 2008 data? I only saw the one county, Baldwin I think.

In any case, there are two arguments being made here, and I'm only trying to respond to one of them. It's sometimes argued that the graph (the other kind, not the latest one TheMan posted) should flatten out for purely statistical reasons, which would only make sense if the sample represented by the first 25% of the vote, with precincts sorted by total votes cast, is very close to being demographically equivalent to the overall sample. And various people have argued that in various ways. In the thread you just pointed me to, someone replies to an objection by saying that the precincts sorted by size are going to be scattered all over the state, and I've been told that before. But when I ran the data on Alabama ... not true. (It wasn't true in Va Beach City either, BTW.) By the time you get to the right hand side of the graph you're looking at precincts that are twice as likely to come from a few very large counties than precincts at the left side of the graph. Why would it be surprising for there to be demographic differences, that could be reflected in %vote, between the left-hand counties and the right-hand counties, and a correlation between %vote and total votes cast?

And if there is such a correlation, what happens to this argument from the thread you just pointed me to?
And if you tell me that Romney has got 50% of the votes in that ballot, I can tell you that he needs to be real close that 50% by the time we have counted 90% of the votes, a bit less close at 80%, etc... Poll science shows that 10/20% might suffice for the oscillator to turn into a complete flat line. But maths allow another nice trick as well. If you tell me after 25% of the votes counted what Romney's score is, I can actually tell you the probability that he will get to a score of 50% at the end of the vote tally. Isn't hypergeometry nifty?

As we have seen, Romney's lines do not converge flatly towards the final result. It does not everytime the ballot is relevent to the final outcome. His score starts by oscillating and flattening but then shoots up in a straight line in dozens of counties. That is mathematically impossible.

"And if you tell me that Romney has got 50% of the votes in that ballot, I can tell you that he needs to be real close that 50% by the time we have counted 90% of the votes," ... only if that ballot sample is statistically random. If you know that your sample is unbiased (or if you are analyzing an exit poll and you massage the data, as they do, to try to approximate a random sample based on the demographics of your samples and the demographics your model predicts for the overall turnout) then and only then can you predict the expected error.

If Romney has got 50% of the vote in a sample and the demographics for that sample are different from the overall demographics, the math does not work that way. If the precincts counted on the left side of a cumulative graph are different demographically than the precincts further to the right, then (assuming that different demographic segments may vote in different ways, but presumably we agree on that) then the graph may or may not flatten out.

Back to your question: Why would "demographics" be at work only in certain places and not others.

That's not a mathematical question, it's an empirical question. And an interesting one, but any time I start responding to the empirical question the (bogus) mathematical argument comes up as a reply. So I'd like to make some progress on the mathematical question first, then come back to he other one.

Two questions:

Do you agree that the marble drawing analogy, and the math that works in that kind of situation, does not apply if the initial sample might be biased in some way? Strictly as a math question.

If we agree on that, then do you agree that the demographics of the more densely-populated counties in a state may reasonably be expected to *possibly* differ demographically from the more sparsely-populated counties in a state? Just as a general question about voter demographics, not about anything else.
 
The vertical blue line separates the precincts that come before the 300,000 "crime happens here" point from the ones that come after. Now I'm not clear on what flipping theory says would be done to the votes at each precinct, but it's a small number of points (with big vote counts) that are doing a lot of the work here.

You're missing the point. The Man's charts are charting Romney votes - Romney Delegate Votes.
I'll say that again: Romney votes - Romney Delegate Votes.

At 300k he suddenly starts gaining votes at a significantly different pace AGAINST HIMSELF.

As The Man said, "The rate at which Romney received new precinct votes increases by 4.2% (of the overall votes cast) at vote count 300k, or precinct votes cast = 850."

We're seeing the same sudden increase in Romney votes at a specific point in cumulative vote totals, but here? We have the holy grail of benchmarks - Romney's own delegate performance. He suddenly starts out performing his own delegates as his 'candidate' votes shift into high gear while his delegate votes trail behind. This is (one of several reasons) why The Man's newest charts are important. For you to suddenly try to hide behind demographics again is plain silly, unless you're positing some magical demographic that suddenly kicks in to vote for Romney while this same demographic magically ignores his delegates. I

It fits perfectly with the flipping theory. Clean as a whistle. If Romney's votes get magical at 300k, but they did not touch the delegates, then you'd see exactly this -- a sharp increase in slope of Romney Votes - Romney Delegate Votes. Again, anyone looking at this chart that does not think it's worth further investigation either doesn't understand the chart or is trying to derail the discussion.

The charts also explain everything I've been saying about the Romney/Santorum discrepancy. If Romney actually had less candidate votes, that would mean his 'conversion rate' would be much higher, which makes absolute sense based on everything we've been discussing.

That would only be expected if the counties with lower population density should be demographically equivalent to the counties with the highest population density, but why would anyone expect that?

You're trying to make the case that high density areas suddenly vote more for Romney but don't vote for Romney delegates? C'mon.
 
Last edited:
You're trying to make the case that high density areas suddenly vote more for Romney but don't vote for Romney delegates? C'mon.

Nope. See my two questions (in blue) to drummergirl a couple of posts back for what may be a better starting point for where I'm going with that.

I'm also waiting on some clarification from The Man, I hope, about whether my calculations replicated his, or whether I made a mistake. The graph looks roughly right but if I made a mistake on it, even a small one, I want to get that corrected before going deeper into it.
 
Try this DSW. This data is using delegates 2 and 3 averaged, which is what I had in my spreadsheet.


Code:
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 1
1 2
1 2
1 2
1 2
1 2
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 4
1 5
1 5
1 5
1 8
2 9
3 9
4 10
5 10
7 12
8 12
9 12
10 14
10 14
11 14
12 14
13 14
14 14
15 14
17 15
19 15
21 15
23 15
25 15
27 15
29 15
31 15
32 15
34 15
36 15
37 15
39 15
41 16
44 16
47 16
50 16
52 20
55 21
58 21
60 21
63 22
65 21
68 21
71 22
75 25
78 25
82 25
86 26
90 25
94 24
98 24
102 24
106 23
110 23
114 29
116 29
120 32
125 32
129 31
134 30
138 29
143 29
147 29
151 29
156 29
161 29
165 30
170 31
175 31
180 31
184 31
188 33
192 32
197 33
203 33
209 36
214 35
220 35
226 34
232 34
236 33
242 33
248 33
254 34
260 34
266 33
273 32
279 33
287 32
294 31
301 30
307 30
314 31
321 31
328 32
335 31
342 30
349 30
357 31
364 31
373 35
380 34
388 35
396 35
404 36
413 35
421 35
430 36
438 39
446 37
455 36
463 36
472 35
480 37
489 37
498 36
508 35
516 35
525 37
535 37
544 36
553 38
563 38
573 38
582 37
592 36
601 37
610 37
618 36
629 38
639 39
651 38
661 39
672 44
682 44
693 47
704 48
715 48
726 47
738 45
749 43
759 44
771 43
782 43
793 42
806 47
817 45
829 48
840 49
851 47
863 50
875 51
887 51
898 53
910 52
922 53
936 51
947 50
959 53
971 52
983 52
996 51
1005 49
1018 56
1032 54
1045 52
1059 50
1071 52
1083 57
1097 57
1110 56
1123 58
1136 60
1150 60
1164 58
1178 58
1193 64
1207 64
1220 63
1233 64
1248 67
1261 67
1276 68
1291 68
1306 66
1319 64
1335 68
1350 66
1365 69
1380 70
1396 71
1411 69
1429 70
1445 68
1461 69
1477 68
1492 69
1509 69
1527 70
1543 67
1561 66
1577 65
1595 66
1613 65
1630 64
1647 64
1665 71
1683 68
1701 70
1719 73
1737 71
1754 70
1773 70
1790 68
1809 67
1830 64
1849 63
1870 66
1889 68
1909 65
1930 72
1949 75
1968 82
1988 82
2009 82
2029 85
2048 84
2069 83
2090 82
2110 80
2131 81
2152 81
2174 82
2194 82
2217 83
2240 81
2260 80
2283 77
2304 78
2323 78
2345 77
2367 77
2389 79
2409 81
2433 86
2458 90
2481 90
2504 90
2528 91
2551 90
2572 90
2596 93
2620 90
2642 91
2666 100
2691 98
2716 96
2741 98
2764 96
2788 94
2814 91
2836 91
2861 96
2886 96
2912 96
2939 100
2965 100
2992 104
3018 104
3045 105
3071 105
3099 104
3125 105
3154 105
3182 104
3210 98
3237 95
3263 94
3291 94
3317 113
3345 115
3374 113
3401 112
3426 113
3454 114
3481 111
3510 111
3538 110
3568 111
3598 108
3629 108
3657 110
3688 117
3720 115
3750 111
3782 108
3813 103
3843 98
3874 97
3906 104
3939 106
3972 107
4004 108
4034 108
4068 108
4099 107
4128 110
4157 108
4191 114
4223 111
4252 107
4285 113
4319 111
4350 110
4379 111
4411 111
4444 111
4478 111
4512 109
4546 105
4577 108
4609 104
4643 106
4677 105
4712 106
4745 105
4780 104
4814 104
4844 103
4878 113
4912 114
4946 109
4978 107
5015 131
5051 140
5087 138
5123 137
5159 140
5197 138
5234 139
5269 140
5301 140
5338 146
5378 147
5414 144
5453 141
5493 138
5533 137
5571 134
5611 132
5648 131
5686 134
5726 131
5765 142
5803 140
5843 143
5880 139
5920 143
5960 141
5999 143
6038 143
6078 141
6114 138
6154 139
6194 136
6236 139
6275 133
6316 133
6358 142
6398 143
6441 137
6483 138
6522 139
6564 136
6606 135
6649 135
6691 136
6733 138
6776 144
6820 145
6862 145
6903 143
6943 155
6983 163
7027 172
7071 178
7113 179
7154 180
7197 202
7242 200
7286 198
7331 203
7376 201
7424 207
7467 204
7513 210
7560 210
7607 213
7654 216
7701 217
7746 216
7790 215
7837 212
7883 235
7930 235
7975 233
8023 229
8072 230
8117 228
8163 232
8210 231
8256 230
8299 235
8349 235
8393 236
8440 237
8490 235
8537 231
8587 231
8636 231
8686 233
8734 229
8782 239
8830 238
8880 236
8930 240
8976 242
9025 243
9069 241
9114 246
9166 260
9211 261
9265 267
9316 266
9368 268
9417 274
9469 280
9521 279
9573 275
9623 271
9674 272
9724 271
9779 265
9831 263
9883 261
9931 259
9984 261
10037 259
10086 258
10139 266
10193 266
10247 278
10301 281
10356 278
10408 277
10463 284
10515 282
10573 284
10626 279
10681 276
10733 274
10787 276
10841 275
10895 277
10949 281
11005 283
11061 284
11115 282
11172 285
11231 279
11289 277
11344 274
11403 272
11461 273
11519 271
11575 273
11633 273
11693 272
11752 265
11808 263
11867 265
11927 263
11985 260
12038 268
12092 274
12147 280
12205 296
12262 292
12322 290
12383 290
12444 285
12501 285
12562 294
12622 286
12681 292
12744 303
12807 298
12862 301
12923 312
12986 313
13046 316
13109 318
13171 320
13233 331
13291 330
13356 340
13421 334
13478 334
13545 343
13607 342
13669 343
13734 346
13801 359
13867 357
13933 353
13996 352
14062 349
14127 352
14191 352
14252 355
14319 360
14382 361
14447 362
14513 367
14573 366
14639 382
14709 381
14776 382
14845 385
14907 373
14973 381
15040 387
15106 390
15176 388
15242 388
15310 396
15374 392
15442 396
15507 400
15576 413
15645 416
15713 411
15780 422
15842 420
15906 429
15976 444
16046 440
16116 437
16181 435
16251 440
16322 435
16393 437
16464 440
16532 446
16603 440
16674 439
16750 438
16822 435
16894 439
16965 437
17038 442
17112 439
17185 438
17257 447
17327 445
17400 448
17475 444
17550 437
17622 440
17695 438
17772 435
17847 434
17919 434
17996 436
18069 438
18145 437
18218 433
18296 437
18374 442
18451 443
18526 444
18604 446
18682 453
18761 456
18840 454
18916 458
18992 466
19065 470
19142 480
19219 474
19294 475
19374 479
19453 471
19532 470
19610 463
19687 466
19766 478
19845 480
19927 488
20007 476
20085 511
20167 512
20248 514
20327 514
20407 515
20485 523
20565 528
20648 528
20731 522
20813 520
20896 535
20976 538
21055 551
21139 557
21226 551
21309 551
21394 558
21479 558
21565 563
21649 563
21734 562
21817 576
21902 593
21987 590
22075 588
22161 591
22243 594
22330 592
22421 598
22510 590
22596 595
22684 595
22770 599
22852 592
22942 603
23032 610
23118 605
23207 605
23299 605
23388 603
23478 618
23571 616
23665 625
23758 622
23848 625
23941 622
24035 618
24128 615
24220 620
24312 615
24408 623
24500 613
24598 617
24694 622
24790 614
24888 608
24983 612
25080 605
25173 618
25267 623
25360 626
25451 633
25551 645
25645 643
25746 641
25844 658
25944 656
26043 647
26141 644
26235 644
26333 649
26433 651
26533 647
26632 646
26730 648
26833 658
26931 651
27027 643
27125 642
27226 652
27323 651
27425 646
27523 640
27626 645
27727 642
27829 654
27935 661
28039 661
28142 664
28248 660
28350 651
28455 664
28558 666
28664 665
28767 656
28872 650
28967 649
29073 658
29180 668
29278 667
29385 671
29491 676
29592 678
29701 685
29808 676
29910 675
30017 687
30121 680
30224 673
30332 688
30444 689
30554 679
30664 674
30767 672
30873 673
30981 680
31087 696
31186 696
31298 708
31410 700
31525 697
31629 686
31734 713
31844 720
31953 713
32062 709
32172 717
32282 709
32396 719
32511 725
32618 727
32731 747
32845 760
32960 755
33077 752
33197 751
33309 752
33428 763
33550 751
33668 742
33785 766
33896 766
34014 782
34132 786
34253 792
34366 782
34481 795
34597 803
34716 811
34835 809
34952 806
35074 809
35192 809
35313 817
35437 817
35563 823
35681 813
35803 807
35925 814
36049 837
36177 831
36303 821
36431 817
36557 810
36680 808
36809 813
36932 822
37061 821
37189 823
37315 822
37439 816
37563 814
37687 824
37812 835
37943 843
38073 845
38205 841
38329 833
38456 879
38584 893
38705 891
38839 899
38967 899
39097 903
39229 898
39358 895
39494 918
39618 924
39753 941
39884 934
40016 942
40154 935
40285 950
40429 963
40567 955
40702 945
40822 935
40946 957
41087 972
41223 962
41359 970
41498 1035
41638 1031
41781 1031
41917 1018
42050 1033
42186 1031
42330 1040
42460 1023
42597 1042
42737 1041
42879 1040
43025 1037
43171 1035
43306 1034
43449 1047
43598 1046
43746 1039
43891 1033
44039 1021
44184 1024
44332 1025
44479 1015
44624 1010
44775 1024
44923 1019
45072 1017
45221 1011
45371 1003
45518 1002
45666 998
45816 988
45965 982
46117 985
46270 976
46409 962
46561 988
46713 1001
46866 994
47021 991
47175 988
47327 990
47484 992
47632 997
47784 1007
47940 1010
48096 1021
48252 1025
48409 1016
48567 1010
48717 1000
48878 999
49032 993
49189 1001
49351 988
49496 977
49662 991
49815 985
49977 983
50139 982
50292 982
50453 1021
50602 1027
50761 1032
50915 1040
51077 1043
51241 1039
51407 1033
51564 1029
51721 1032
51881 1048
52044 1053
52198 1061
52355 1082
52517 1077
52681 1129
52847 1121
53013 1123
53174 1101
53336 1113
53502 1110
53669 1116
53833 1100
54000 1087
54162 1096
54335 1099
54500 1088
54666 1088
54828 1097
54997 1095
55167 1093
55333 1092
55505 1122
55670 1113
55842 1108
56017 1104
56196 1107
56369 1095
56535 1081
56700 1080
56875 1089
57049 1087
57224 1076
57398 1068
57569 1080
57744 1085
57923 1076
58097 1073
58272 1074
58443 1073
58618 1089
58793 1079
58965 1077
59147 1070
59326 1057
59511 1060
59692 1046
59873 1045
60053 1055
60234 1046
60419 1041
60596 1025
60777 1036
60961 1047
61146 1050
61330 1037
61516 1037
61695 1027
61880 1030
62063 1025
62250 1010
62435 1020
62623 1035
62811 1025
62996 1038
63175 1042
63369 1056
63554 1048
63740 1040
63928 1072
64117 1068
64306 1062
64493 1055
64674 1058
64864 1087
65056 1101
65245 1090
65436 1099
65624 1101
65817 1114
66004 1098
66197 1108
66390 1116
66582 1124
66774 1128
66971 1134
67164 1130
67366 1124
67559 1113
67754 1128
67951 1129
68142 1175
68342 1226
68531 1209
68734 1250
68933 1249
69128 1236
69326 1249
69532 1252
69733 1249
69927 1238
70100 1254
70307 1302
70515 1292
70706 1281
70913 1302
71112 1287
71310 1307
71513 1293
71726 1299
71932 1308
72139 1306
72352 1307
72564 1277
72771 1272
72982 1273
73191 1264
73405 1276
73616 1265
73826 1253
74035 1244
74245 1228
74460 1222
74676 1216
74886 1205
75091 1205
75304 1206
75499 1196
75716 1196
75924 1202
76131 1210
76338 1204
76552 1212
76763 1221
76976 1238
77193 1236
77410 1234
77629 1227
77826 1226
78043 1239
78263 1241
78480 1233
78702 1246
78922 1228
79135 1223
79355 1234
79573 1224
79790 1220
80009 1216
80241 1215
80445 1200
80665 1209
80881 1199
81101 1209
81320 1224
81524 1231
81737 1258
81963 1278
82187 1267
82413 1253
82636 1252
82851 1247
83076 1277
83294 1280
83501 1295
83727 1297
83953 1289
84177 1287
84404 1278
84630 1294
84856 1281
85087 1281
85317 1273
85547 1266
85776 1268
86008 1270
86239 1268
86473 1269
86703 1256
86939 1272
87170 1270
87406 1274
87639 1272
87873 1257
88092 1284
88324 1305
88563 1313
88797 1302
89031 1313
89252 1309
89488 1325
89710 1339
89949 1360
90189 1349
90429 1345
90653 1361
90889 1384
91132 1382
91376 1382
91605 1363
91851 1376
92096 1375
92342 1373
92576 1365
92820 1358
93061 1362
93305 1366
93554 1367
93794 1349
94038 1352
94281 1353
94531 1377
94780 1369
95027 1355
95261 1384
95505 1393
95754 1402
96004 1418
96254 1413
96510 1416
96763 1414
97013 1404
97270 1395
97519 1383
97772 1394
98015 1406
98272 1429
98517 1419
98777 1437
99030 1432
99290 1417
99540 1411
99797 1416
100055 1416
100311 1401
100561 1408
100813 1425
101074 1423
101338 1434
101601 1416
101852 1409
102126 1446
102387 1429
102653 1437
102916 1419
103185 1418
103449 1530
103716 1529
103976 1519
104239 1544
104491 1545
104758 1573
105025 1610
105296 1624
105559 1610
105826 1623
106093 1638
106357 1644
106628 1659
106902 1665
107168 1664
107441 1691
107711 1693
107989 1700
108247 1707
108523 1718
108780 1713
109056 1780
109325 1788
109605 1794
109871 1806
110152 1837
110431 1839
110716 1829
110990 1815
111272 1826
111553 1809
111815 1818
112095 1800
112378 1791
112663 1775
112945 1762
113231 1760
113510 1750
113796 1757
114068 1754
114353 1756
114632 1753
114926 1755
115217 1730
115496 1716
115781 1743
116077 1737
116369 1723
116658 1737
116947 1732
117244 1740
117551 1748
117848 1745
118135 1730
118429 1710
118731 1719
119029 1711
119314 1697
119590 1701
119887 1728
120187 1741
120479 1716
120779 1717
121062 1716
121367 1731
121664 1732
121969 1729
122261 1734
122549 1752
122849 1803
123144 1786
123427 1809
123733 1830
124045 1832
124345 1828
124648 1827
124959 1839
125275 1833
125576 1844
125892 1854
126189 1843
126504 1890
126817 1873
127111 1843
127416 1842
127731 1851
128045 1830
128345 1814
128655 1856
128972 1848
129279 1842
129593 1872
129903 1866
130215 1846
130527 1843
130847 1832
131166 1822
131482 1794
131803 1798
132110 1790
132427 1802
132758 1802
133085 1784
133423 1771
133753 1757
134083 1759
134413 1740
134748 1744
135065 1729
135399 1755
135735 1729
136068 1713
136396 1720
136723 1726
137055 1697
137386 1696
137727 1719
138059 1721
138390 1724
138720 1725
139059 1709
139391 1716
139736 1721
140072 1724
140417 1729
140755 1717
141086 1718
141430 1735
141782 1756
142118 1753
142445 1757
142790 1772
143137 1750
143488 1761
143828 1781
144173 1769
144525 1776
144874 1783
145230 1789
145575 1779
145911 1765
146249 1833
146594 1851
146953 1877
147309 1868
147663 1868
148010 1853
148356 1863
148710 1909
149059 1898
149423 1966
149780 1969
150139 2018
150502 2037
150865 2033
151231 2022
151604 2039
151967 2039
152335 2030
152699 2018
153072 2024
153430 2006
153786 1997
154160 2004
154537 2025
154915 2011
155293 2000
155666 1981
156051 1990
156416 1980
156796 2017
157180 2003
157553 2023
157932 2033
158315 2017
158683 2036
159071 2019
159451 2011
159826 2004
160199 1993
160575 2004
160941 1974
161333 2018
161721 2013
162114 2006
162513 1994
162918 1992
163295 2011
163686 2004
164071 2023
164467 2038
164867 2055
165268 2082
165665 2075
166067 2065
166443 2068
166834 2077
167228 2108
167621 2129
168035 2120
168426 2084
168833 2143
169241 2195
169640 2192
170054 2247
170467 2220
170888 2243
171302 2243
171728 2259
172156 2220
172574 2233
172982 2248
173398 2242
173822 2251
174212 2250
174633 2278
175054 2323
175475 2333
175899 2334
176307 2349
176733 2386
177159 2367
177573 2362
178001 2384
178399 2350
178809 2364
179230 2420
179642 2446
180055 2491
180496 2533
180930 2505
181362 2482
181808 2492
182256 2465
182697 2464
183130 2448
183574 2484
184019 2483
184467 2494
184912 2496
185355 2478
185784 2470
186240 2515
186689 2509
187122 2518
187572 2535
188032 2521
188463 2499
188915 2527
189357 2508
189815 2536
190272 2541
190720 2523
191157 2541
191593 2624
192061 2666
192521 2682
192970 2683
193432 2705
193888 2701
194350 2725
194802 2732
195264 2807
195701 2794
196141 2920
196617 2938
197085 2925
197545 2919
197995 2938
198455 2966
198922 2959
199382 2929
199848 2921
200304 2917
200785 2976
201258 2942
201724 2917
202210 2927
202680 2899
203133 2961
203620 3013
204116 2987
204593 2970
205081 2993
205555 2987
206044 2989
206516 2981
206994 2998
207470 3003
207972 3041
208471 3010
208954 3010
209453 3036
209954 3029
210426 3005
210936 3043
211425 3021
211930 3051
212407 3050
212923 3081
213429 3060
213930 3069
214432 3111
214934 3128
215447 3193
215959 3169
216468 3152
216970 3127
217485 3149
217990 3150
218514 3220
219048 3215
219574 3219
220098 3230
220627 3249
221138 3220
221656 3230
222202 3281
222738 3230
223260 3212
223788 3231
224317 3224
224831 3210
225363 3223
225903 3238
226425 3244
226966 3278
227502 3251
228016 3234
228549 3289
229082 3298
229630 3342
230175 3302
230711 3263
231251 3257
231802 3267
232360 3260
232907 3205
233461 3218
234009 3209
234559 3168
235094 3156
235654 3154
236190 3160
236714 3207
237256 3271
237801 3267
238355 3260
238912 3325
239476 3364
240034 3327
240605 3347
241159 3364
241719 3442
242282 3485
242856 3479
243415 3486
243983 3496
244551 3524
245121 3510
245703 3497
246246 3457
246827 3546
247382 3538
247952 3568
248530 3548
249082 3541
249645 3586
250201 3574
250761 3571
251346 3591
251907 3578
252481 3559
253041 3619
253631 3671
254201 3662
254791 3658
255372 3687
255958 3686
256561 3711
257158 3694
257761 3692
258363 3700
258959 3694
259573 3705
260174 3700
260783 3743
261413 3748
262035 3746
262636 3721
263251 3736
263880 3721
264484 3667
265120 3706
265749 3669
266374 3673
267003 3692
267633 3677
268253 3647
268880 3692
269513 3681
270134 3651
270787 3676
271419 3623
272047 3605
272685 3648
273296 3642
273916 3703
274567 3791
275209 3746
275862 3784
276524 3782
277150 3987
277794 4097
278418 4100
279036 4146
279662 4283
280311 4367
280970 4386
281637 4351
282291 4363
282966 4368
283636 4340
284311 4326
284988 4342
285657 4348
286340 4374
287015 4382
287680 4433
288370 4438
289064 4418
289747 4404
290431 4422
291127 4415
291797 4472
292494 4512
293182 4503
293884 4506
294573 4491
295238 4503
295941 4508
296644 4491
297318 4443
298025 4457
298736 4443
299435 4443
300125 4469
300843 4516
301539 4465
302258 4524
302978 4544
303691 4525
304406 4516
305102 4551
305838 4602
306570 4581
307282 4558
307987 4577
308726 4564
309459 4558
310191 4661
310900 4662
311606 4725
312316 4895
313049 4904
313769 4900
314484 4946
315238 5076
315971 5077
316714 5078
317440 5088
318174 5112
318924 5293
319702 5488
320442 5470
321201 5560
321951 5635
322703 5740
323471 5892
324225 5877
324972 5889
325734 5959
326537 5961
327294 5907
328064 5960
328845 5992
329602 5983
330390 5947
331184 5916
331972 5882
332761 5857
333546 5881
334323 5870
335103 5943
335908 5987
336713 6006
337510 6030
338296 6067
339106 6101
339911 6089
340724 6089
341497 6156
342307 6333
343100 6343
343905 6410
344712 6477
345507 6511
346341 6511
347148 6559
347953 6566
348784 6677
349553 6666
350383 6886
351179 6907
351960 7028
352814 7088
353642 7063
354442 7094
355280 7136
356120 7111
356949 7190
357789 7158
358609 7187
359478 7367
360344 7326
361199 7278
362075 7313
362953 7286
363823 7346
364718 7382
365598 7332
366449 7589
367313 7771
368183 7916
369070 7947
369931 7920
370792 8037
371667 8123
372567 8211
373475 8197
374334 8212
375236 8233
376133 8286
377023 8336
377946 8356
378840 8329
379763 8337
380676 8320
381599 8276
382534 8283
383448 8321
384364 8407
385321 8455
386289 8493
387245 8431
388176 8448
389147 8694
390115 8673
391063 8892
392016 9095
392973 9138
393940 9212
394917 9237
395861 9424
396860 9666
397855 9606
398848 9592
399812 9595
400772 9723
401781 9745
402820 9771
403830 9751
404856 9791
405886 9764
406883 9728
407890 9801
408934 9875
409960 9920
411014 9916
412046 9896
413064 9923
414114 9972
415181 9973
416185 9943
417225 10238
418285 10260
419330 10293
420410 10337
421461 10351
422478 10399
423546 10526
424600 10501
425685 10575
426746 10657
427842 10726
428919 10756
429966 10788
431080 10843
432158 10789
433231 10897
434333 11032
435443 11078
436578 11109
437713 11060
438795 11050
439922 11187
441035 11260
442182 11250
443335 11210
444491 11210
445636 11301
446809 11329
447967 11319
449146 11360
450287 11406
451439 11714
452610 11745
453757 11872
454914 11938
456083 11998
457241 12179
458407 12227
459626 12331
460798 12264
461975 12312
463171 12329
464390 12413
465626 12409
466860 12405
468116 12498
469360 12534
470585 12626
471848 12720
473052 12715
474328 12964
475540 12916
476840 13071
478165 13042
479500 13079
480819 13141
482147 13133
483408 13321
484723 13619
486082 13935
487448 13999
488797 14146
490160 14220
491560 14327
492932 14418
494337 14516
495669 14620
497110 14856
498560 14865
499996 14942
501403 15013
502871 15029
504336 15044
505766 15015
507260 15192
508690 15276
510156 15456
511620 15537
513151 15517
514683 15496
516185 15526
517684 15602
519239 15712
520791 15751
522367 15839
523892 15921
525484 16090
527073 16192
528685 16405
530319 16444
532001 16508
533665 16484
535383 16693
537099 16793
538902 16911
540730 16875
542521 16821
544349 17041
546220 17039
548176 17090
550099 17051
551971 17178
553908 17387
555824 17586
557835 17841
559864 17919
561907 17923
563988 17980
566348 17955
568728 17900
571255 17889
574565 18224
578089 18312
583331 18531
 
You're trying to make the case that high density areas suddenly vote more for Romney but don't vote for Romney delegates? C'mon.
Nope. See my two questions (in blue) to drummergirl a couple of posts back for what may be a better starting point for where I'm going with that.

What? Nice try, but no. The only reason you're discussing demographics with Drummergirl is because in your post 534, which was in response to The Man's charts, you brought them up again, even though they're meaningless in regards to The Man's charts.

Heck, you straight up wrote:
And considering that the curve of the Mitt minus dels graph slopes more sharply upward (when suitably smoothed on both the x and y axes) over the same region where the third graph flattens out because from there on out we're drawing >80% of the precincts from the most populous counties, can anyone at least entertain the possibility that there could be a demographic difference at work here? That if your samples are 80% from the most populous counties you might just be looking at some significant demographic differences compared to samples drawn mostly from less populous counties?

... in which you're trying to claim Romney does better against his own delegates because of demographics, which doesn't even begin to make sense. Of course, you don't directly mention this is what The Man's charts are about, because then it would be obvious bringing up demographics made no sense. Instead, you posted some charts and started talking about demographics in a way that implies The Man's charts can be dismissed. Demographics have nothing to do with The Man's charts, and I fail to see why you'd try to obfuscate the conversation by drudging them up in relation to his charts.

And then, in the post I actually quoted, you wrote:
EDIT: more specifically, the rest of that post looks at the way that around the time you get to the "knee" in the graph, you've also gotten to a point at which the remaining data points are 80% from the 20 highest population counties, with just five of those largest counties having twice as much weight from there to the right hand side of the graph than they do overall. What I don't see is why people think the demographics of the precincts represented on the left hand side of the graph should be expected to be close enough to those on the right-hand side of the graph that you can make the inferences that are made. That would only be expected if the counties with lower population density should be demographically equivalent to the counties with the highest population density, but why would anyone expect that?

Again, that sure looks like you're talking about what The Man's charts show, and was in response to The Man, not drummergirl.

And now you're trying to say the demographic discussion is separate from your discussion about The Man's charts? No way. You brought demographics up about them, and more than once, which again, begs the question:

why the heck would any demographic cause people to suddenly start voting for Romney but not his delegates?
 
Last edited:
Quick point- this particular algorithm at 300k that flips to Romney is a small portion of the manipulation. This preliminary chart gives an idea all of the electronic manipulation. This is NOT my final conclusion- there is still much work to be done and new bits to be learned. Note that the X-Axis represents the reference path for all 4 candidate's curves so that all 4 curves ARE the manipulation:
IsolatingtheAlgorithms-2.jpg
 
Last edited:
Try this DSW. This data is using delegates 2 and 3 averaged, which is what I had in my spreadsheet.


Code:
1 0
1 0
1 0
1 0 [...]

Thanks! My results are a bit different, and I'd like to get this exactly right before going deeper, especially because mine isn't showing a knee and that's the region I want to look at more closely.

You start out with a vote total of 1, but I have a handful of precincts with zero votes. One for example is Choctaw county, Halsell precinct:
http://results.enr.clarityelections.com/AL/Choctaw/38325/75721/en/reports.html
I guess only democrats live there. It shows zero votes for GOP candidates, zero in delegate races. I'm guessing you just started the cumulative vote total at 1 rather than 0, to avoid a divide-by-zero somewhere.

But then on line 36 you get (1,1) and I'm still in the zero precincts. (I'm sorting on total votes, then county, then precinct. For me #36 is Wilcox, VOC. BLDG ANNIEMANIE.)

I don't get out of the zeros until line 40 (Choctaw, INTERSECTION). But your cumulative vote total is 1.0 until line 55.

I picked out a few points in the data where the total votes is unique (such as Russell, Roy Martin with 720 total), and we hit these on different lines but at least I can check that my calculation of the average of delegate 2 and delegate 3 is the same as yours, except that you round it to an integer. But I only checked a few that way.

And there seem to be other discrepancies, but if you get a chance to look at the data to see if the above differences indicate anything I'd appreciate it. I'm assuming we're both using the dataset that Liberty posted, right?
 
Thanks! My results are a bit different, and I'd like to get this exactly right before going deeper, especially because mine isn't showing a knee and that's the region I want to look at more closely.

You start out with a vote total of 1, but I have a handful of precincts with zero votes. One for example is Choctaw county, Halsell precinct:
http://results.enr.clarityelections.com/AL/Choctaw/38325/75721/en/reports.html
I guess only democrats live there. It shows zero votes for GOP candidates, zero in delegate races. I'm guessing you just started the cumulative vote total at 1 rather than 0, to avoid a divide-by-zero somewhere.

But then on line 36 you get (1,1) and I'm still in the zero precincts. (I'm sorting on total votes, then county, then precinct. For me #36 is Wilcox, VOC. BLDG ANNIEMANIE.)

I don't get out of the zeros until line 40 (Choctaw, INTERSECTION). But your cumulative vote total is 1.0 until line 55.

I picked out a few points in the data where the total votes is unique (such as Russell, Roy Martin with 720 total), and we hit these on different lines but at least I can check that my calculation of the average of delegate 2 and delegate 3 is the same as yours, except that you round it to an integer. But I only checked a few that way.

And there seem to be other discrepancies, but if you get a chance to look at the data to see if the above differences indicate anything I'd appreciate it. I'm assuming we're both using the dataset that Liberty posted, right?

OK- The "1" vote was inserted to prevent my "cumulative%" calculation from having a "0" in the denominator. That's not going to affect the Y-Axis value at all. It WILL shift the data points to the left by a whopping 1 vote, or 0.000172 % of the width of your chart, or 0.00001375 inches on a 8" wide chart.

I am working from the excel chart that Liberty1789 posted earlier in this thread- will repost the link. So post the graph that you were to create from the data I sent to you.
 
Last edited:
OK- The "1" vote was inserted to prevent my "cumulative%" calculation from having a "0" in the denominator. That's not going to affect the Y-Axis value at all. It WILL shift the data points to the left by a whopping 1 vote, or 0.000172 % of the width of your chart, or 0.00001375 inches on a 8" wide chart.

The difference of 1 isn't a big deal, I was just going through the differences one at a time. Rounding the averages won't make any difference either. But that's not the only difference, as the next few lines of what I wrote illustrated. At line 36 you're apparently hitting a precinct with zero total votes, but your y value goes up so there would have to be some Mitt delegates there, that I don't have. And I hit the first non-zero vote total on line 40, but your cumulative total doesn't go from 1 to 2 until line 55.

These are not significant differences in terms of how the graph looks, but the magnitudes of the differences get larger, and it changes the shape of the graph, so hopefully the first differences encountered will help zero in on where I've got the data wrong. A lot else about the data seems to be in agreement, based on spot checking some of the larger precincts (where I could identify that we were looking at the same precinct even though we hit the precinct at different points because of earlier differences), and where I could find those agreements my calculation of the y value matched yours. So I'm close to being able to replicate the result and dig into it some more, but not quite there yet.

Again: you keep reading this as if you think my using the word "average" or trying to correct a difference of one vote is a critique of what you've done, and it is NOT that in any way; I'm just trying to replicate your result so I can look at it in more depth.

I am working from the excel chart that Liberty1789 posted earlier in this thread- will repost the link.

I was using the link from #94 in this thread, which linked here: http://www.filedropper.com/alabamadelegateraces
But when I go there now it redirects to the front page of that website.
I reloaded my original spreadsheet and verified that in the data I have, there are only 39 precincts with zero total votes, but since your cumulative total doesn't change until line 55 you seem to have more precincts with zero total votes.

Again: not a significant difference in the long run, not a critique, probably my error somewhere, but I can't start digging into the phenomenon until I can replicate the result, and without fixing these early errors the later precincts don't line up and tracking down the discrepancy is much harder.
 
Back to your question: Why would "demographics" be at work only in certain places and not others.

That's not a mathematical question, it's an empirical question. And an interesting one, but any time I start responding to the empirical question the (bogus) mathematical argument comes up as a reply. So I'd like to make some progress on the mathematical question first, then come back to he other one.

Two questions:

Do you agree that the marble drawing analogy, and the math that works in that kind of situation, does not apply if the initial sample might be biased in some way? Strictly as a math question.

If we agree on that, then do you agree that the demographics of the more densely-populated counties in a state may reasonably be expected to *possibly* differ demographically from the more sparsely-populated counties in a state? Just as a general question about voter demographics, not about anything else.

Obviously, if you put a "red magnet" in the bottom of the marble bag, the curve shape will be shifted; there will still be 50% red in the end though.

The demographic question is quite important. And a key part of it is that any demographics would have to apply in all similar cases.

Here are 7 demographically similar counties from South Carolina (based on the population density charts from the SC thread). In Oconee County, there is flipping from Paul and Santorum to Romney. In Georgetown there is flipping from Gingrich, Santorum, and Paul to Romney. In Lancaster there is flipping from Gingrich to Romney. In Kershaw and Darlington counties there is no flipping at all.

What demographic factor is there that in very similar circumstances (same election, same day, same state, same size counties, similar vote totals) would cause a positive linear correlation for Romney in 3 cases, but not 2 and would cause inconsistent negative linear correlations for Paul, Gingrich, and Santorum? If demographics explains the slopes, what explains the flat lines?

35atyep.jpg
 
Ron Paul has been winning a tremendous amount of delegates in states that he did not do well in the popular vote? Is this not the same thing, with the coin flipped?
 
Ron Paul has been winning a tremendous amount of delegates in states that he did not do well in the popular vote? Is this not the same thing, with the coin flipped?

Are you seriously comparing the Ron Paul campaign's excellent delegate winning strategy that makes maximum use of all the GOP rules TO criminal electronic vote theft?
 
Obviously, if you put a "red magnet" in the bottom of the marble bag, the curve shape will be shifted; there will still be 50% red in the end though.

The demographic question is quite important. And a key part of it is that any demographics would have to apply in all similar cases.

But the math won't tell you whether the cases are similar are not. Math doesn't have anything to say about whether the 2008 Alabama race (I'd love to get a link to that data if someone turned up more than just the one county) and the 2012 Alabama race are affected by demographic differences in identical ways. With different candidates running, that's not even a reasonable expectation.

I'll give you one example if you wont try to read more into it than I'm saying. The superbrochure people think the SB is super awesome. And they've set up a web site for donations to send them out, and because of the way they set up the web site, saturation in smaller precincts (which are cheaper to "buy") is higher than saturation in larger precincts. Someone posted some very limited data purporting to show that Ron Paul's success in SC correlated with SB saturation. What if they were right, just for the sake of argument? Then because they made it easier to saturate the small precincts, and because saturation correlates with Paul's %vote (they claim), Paul's %vote would tend to decline as precinct size, and SB saturation, go down.

*I'm not making that argument.* Their data (if it holds more widely as they claim) could just as easily be explained because Paul did worse in large precincts due to flipping, and so it's only coincidence that Paul did worse where SB saturation was lower. Or they could be right. They didn't publish enough data to draw any conclusions.

The point I *am* trying to make is that here's one example of an effect that, if genuine, would correlate with precinct size, and apply only in 2012. Romney has also started using a company named TargetPoint to do targeted campaigning, and they brag (without specifics) about doing something radically awesome there about precisely targeted campaigning. Mathematics won't tell you whether or not they're doing something like the inverse of the SB pattern, focusing feet-on-the-ground spending in the precincts that can deliver the most votes, for example. Don't get hung up on those specifics. The point is that Math doesn't predict that there can't be differences between the 2008 and 2012 elections. Math doesn't know what the designers of the superbrochure web site might do in 2012 that they didn't do in 2008, along with countless other potential differences.

My point is that the mathematical argument, the probability calculations, etc., are all only valid if an assumption holds, and it's an assumption that mathematics can't answer. In fact what you've really proven is that the assumption does *not* hold in some cases. So you can't go back and analyze those cases using math that would only be valid if the assumption holds after proving that it does not hold.

Which is not to say that asking *why* there's a difference isn't a valid question. I'm only saying that the mathematical argument is invalid.

Here are 7 demographically similar counties from South Carolina (based on the population density charts from the SC thread). In Oconee County, there is flipping from Paul and Santorum to Romney. In Georgetown there is flipping from Gingrich, Santorum, and Paul to Romney. In Lancaster there is flipping from Gingrich to Romney. In Kershaw and Darlington counties there is no flipping at all.

What demographic factor is there that in very similar circumstances (same election, same day, same state, same size counties, similar vote totals) would cause a positive linear correlation for Romney in 3 cases, but not 2 and would cause inconsistent negative linear correlations for Paul, Gingrich, and Santorum? If demographics explains the slopes, what explains the flat lines?

Are they demographically similar in all respects, or just population density? You talk about "what demographic factor," singular, as if it would have to come down to one. Elections are complex, and how people choose between one candidate and another is complex. And to even start to look at this you'd have to look at what correlates with precinct size in those different counties. Is there geographical clustering, as in Va Beach City? If so, do the larger precincts tend to come from more affluent areas?

In fact, let's just look. I just went to zillow, looked at Va Beach City, set a min price of 1 million, and what do you know? That large cluster in the northeast, the one that constituted 60% of the data to the right of the "crime" point, also turns out to be a cluster of the most expensive houses. So the big jump in the graph is *exactly* at the first precinct you hit of several that are all apparently in one of the most affluent areas. A neighborhood that is affluent and (if the data is genuine) very pro-Romney. This happened because the precinct size order results in a strong pattern of geographical clustering, and more than half of the largest precincts are in a geographical cluster that also happens to be very affluent. (And that wasn't the only cluster to the right of the "crime" point.)

Nothing in math tells you that these kinds of correlations won't happen. And notice that this wasn't a simple one. The geographical clustering alone is suggestive, but doesn't explain the graph. The affluence of certain areas, with affluent areas skewing pro-Romney, wouldn't be enough to explain the graph. It took the combination of those factors, so that you hit (exactly at the "crime" point) the first of several very affluent and very pro-Romney precincts that, because the sorted order results in geographical clustering, all end up bunched together in the last precincts on the graph.
 
Ron Paul has been winning a tremendous amount of delegates in states that he did not do well in the popular vote? Is this not the same thing, with the coin flipped?

Other people have asked that, but it's a misunderstanding of how things were done in Alabama. Some states had a straw poll or whatever, and a separate thing entirely for selecting delegates, and Paul in some cases did very, very well in the latter and not so well in the former.

In Alabama, it's one ballot for both. But also, the delegate races aren't choosing between delegates for different candidates. Each delegate race is for people who want to be a delegate for one candidate. It's choosing who would be the potential first delegate for Ron Paul, for example, between two Ron Paul supporters. So Paul's strategy for winning delegates that has been so effective elsewhere doesn't really apply in Alabama.
 
I need some feedback from any of you on a method of "adjusting" delegates for the purpose of eliminating noise. Some basic facts:

1. Delegate votes, regardless of position number, are believed to be proportionally representative of the cast votes in the Alabama 2012 Primary.
2. None of the delegate votes position final totals exactly matches the candidate vote final totals.

Because the delegate votes totals of just about every precinct deviate erratically, I have devised a simple "adjustment" that largely eliminates erratic noise in each candidate's "votes minus delegates" calculation" that I have appplied in each precinct:

#Delegates each candidate for a particular precinct (Adjusted) = [(reported votes total all candidates for precinct) / (total delegates all candidates for precinct)] X candidate's reported delegates for particular precinct.

In other words, we are simply adjusting the number each candidate's delegates in each precinct according using the ratio of (total votes reported) / (total delegates reported).

The results are pretty dramatic, especially for Paul and Gingrich:

Slide1-1.jpg

Slide2-1.jpg

Question: Why does the adjustment appear to dramatically reduce noise for all candidates EXCEPT Santorum? I have no idea.
 
Last edited:
Back
Top